

Table of Contents

About the Author

Acknowledgments

Introduction

Chapter-1: Getting Started with Microservices

What are Microservices?

Microservices vs Monolithic Architectures

Advantages of Microservices

Challenges and Considerations

Key Technologies and Tools

Microservices Communication

Domain-Driven Design (DDD)

Task-1: Identify Microservices for the book

Task-2: Identify the List of Git Repositories Needed

Task-3: Create new Azure DevOps Organization

Task-4: Create new Azure DevOps Project

Chapter-2: Docker Fundamentals

Overview

What is Docker?

Why use Docker?

Docker concepts

Container orchestration

Docker Desktop

Install Docker

Docker Commands

Chapter-3: Getting Started with Docker

Step 1: Get the Sample Application

Step 2: Create Docker Image

Step 3: Create Docker Container

Step 4: Port Binding

Step 5: Browse the Frontend Application

Step 6: View Docker Logs

Step 7: Docker Commands

Chapter-4: Create Your First Microservice with .NET Core Web API

Step-1: Create a new repo in azure DevOps

Step-2: Clone the repo from azure DevOps

Step-3: Create a new .NET Core Web API project

Step-4: Test the new .NET core Web API project

Step-5: Add Dockerfiles to the API project

Step-6: Docker Build & Run

Step-7: Push docker container to ACR

Step-8: Pull docker container from ACR

Chapter-5: Create Your Second Microservice with Node.js

Step-1: Setup repository in Azure DevOps.

Step-2: Create a new Node JS API project

Step-3: Test the Node JS API project

Step-4: Add Dockerfiles to the MVC project

Step-5: Docker build locally

Step-6: Docker run locally

Step-7: Push docker container to ACR

Chapter-6: Create Your First Website using .NET Core MVC Application

Step-1: Create a new ASP.NET Core Web App (MVC project)

Step-2: Test the new ASP.NET core Web App project

Step-3: Update home page contents[Optional]

Step-4: Add Dockerfiles to the MVC project

Step-5: Docker Build locally

Step-6: Docker Run locally

Step-7: Push docker container to ACR

Chapter-7: Create Your Second Website using React.js

Step-1: Install Node.js and NPM

Step-2: Create a new React JS application

Step-3: Add Dockerfiles to the MVC project

Step-4: Docker Build locally

Step-5: Docker Run locally

Step-6: Push docker container to ACR

Chapter-8: Create your First Database with SQL Server

Benefits of SQL Server Container

Step-1: Setup Git Repository for SQL Server database

Step-2: Create Folder Structure for SQL Server database

Step-3: Add Dockerfiles to the Database Project

Step-4: Test the SQL Server database connection using SSMS

Step-5: Test the SQL server database connection using Azure Data Studio

Step-6: Push Docker Container to ACR

Chapter-9: Create your First Database with PostgreSQL

Step-1: Setup Git Repository for PostgreSQL database

Step-2: Create Folder Structure for PostgreSQL database

Step-3: Add Dockerfiles to the Database Project

Step-4: Create Docker Compose file

Step-5: Test the PostgreSQL database connection from psql tool

Step-6: Test the PostgreSQL database from pgadmin4 tool

Step-7: Push Docker Container to ACR

Chapter-10: Setting up Keycloak in a Docker Container

Step-1: Setup repository for Keycloak in Azure DevOps

Step-2: Create Keycloak project

Step-3: Keycloak setup with docker compose

Step-3.1: Setup Keycloak Service

Step-3.2: Setup Keycloak Service with PostgreSQL database

Step-4: Keycloak setup with Dockerfile

Step-4.1: Create Dockerfile

Step-4.2: Docker build locally

Step-4.3: Docker run locally

Step-5: Publish the Keycloak docker container to container registry

Chapter-11: Setting up Drupal in a Docker Container

Step-1: Setup Git Repository for Drupal

Step-2: Create Drupal Project

Step-3: Create Docker Compose file

Step-4: Build Drupal locally

Step-4.3: Run Drupal Container locally

Appendix:

Appendix-A: Git Cheat Sheet

Appendix-B: Docker Cheat Sheet

Appendix-C: Dockerfile Cheat Sheet

About the Author

Anji Keesari is a software engineer and cloud architect with over 20 years of experience in the technology industry.
He has been involved in numerous projects related to cloud computing, microservices architecture, and technologies
such as Kubernetes, Terraform, and containers.

Anji has hands-on experience deploying and managing Kubernetes clusters in production environments. He is also
proficient in tools like ArgoCD and Helm, utilizing them to deploy microservices applications on Kubernetes. Anji also
has extensive knowledge of containers and containerization technologies, including Docker and container
orchestration tools such as Kubernetes.

Apart from his expertise in Kubernetes and related tools, Anji has a strong background in Terraform, utilizing it to
deploy infrastructure on various cloud platforms, including Azure and AWS.

Anji has a passion for teaching and sharing his knowledge with others. He has written numerous articles and
tutorials on Kubernetes, ArgoCD, and Helm, and published in Medium website.

With his extensive knowledge and experience in Kubernetes, ArgoCD, and Helm, Anji is the perfect author for this
book on Build and Deploy Microservices Applications on a Kubernetes using ArgoCD and Helm . His passion
for teaching and his ability to explain complex concepts in simple terms will make this book a valuable resource for
readers of all levels of expertise.

Throughout his career, Anji have worked with various companies in diverse domains such as Banking, Healthcare,
and Finance, across countries such as India, UK, and US. He is dedicated to making a significant impact in his
workplace and helping others along the way.

During his free time, Anji finds joy in various activities such as playing soccer, going hiking, exploring new places, and
most importantly, spending quality time with his loved ones.

For any questions, suggestions, or topic requests, feel free to drop him a message, and he'll get in touch when his
schedule permits.

Contact Information:

Email: anjkeesari@gmail.com

Website: https://anjikeesari.com

mailto:anjkeesari@gmail.com
https://anjikeesari.com/

Acknowledgments

Writing a book is a collaborative effort, and I could not have done it without the help and support of many people.

First and foremost, I would like to thank my family for their patience, understanding, and encouragement throughout
this project, they scarified lot of (long) weekends. Their love and support kept me going during the long hours of
writing and editing.

During this book writing I had to refer lot of online materials, I would also like to thank the many individuals and
organizations who have contributed to the development of Kubernetes, ArgoCD, Helm, Terraform, and
containerization technologies. Without their hard work and dedication, this book would not be possible.

Finally, I would like to thank the readers of this book for their interest and support. I hope that this book will be a
valuable resource for anyone who wants to learn how to build and deploy microservices applications on a
Kubernetes using ArgoCD and Helm.

Thank you all for your contributions and support.

Warm regards,

Anji Keesari

Introduction

Welcome to "Building Microservices with Containers: A Practical Guide." In today's rapidly growing technological
landscape, the demand for scalable, flexible, and resilient software solutions is necessary. In response to this
demand, the architecture of choice for many modern applications is microservices. Microservices enables the
development of complex systems as a set of small, independently deployable services.

This book is your detailed guide to understanding and implementing microservices architecture using
containerization technology, specifically Docker. Whether you're a regular application developer looking to adopt
microservices or a new to the technology, this book will provide you with the knowledge and hands-on experience
necessary to succeed in building scalable and maintainable applications.

Why Microservices?

Before looking into the technical details, let's briefly explore why microservices have become the architecture of
choice for many organizations. Microservices offer several advantages over traditional monolithic architectures,
including:

Scalability: Microservices allow individual components of an application to scale independently, enabling better
resource utilization and improved performance.

Flexibility: With microservices, teams can choose the most appropriate technology stack for each service, leading
to greater flexibility and innovation.

Resilience: Isolating services from each other reduces the impact of failures, making the overall system more
resilient.

Continuous Delivery: Microservices facilitate continuous delivery and deployment practices, enabling teams to
release updates quickly and frequently.

Why Containers?

While microservices offer numerous benefits, managing a large number of services can be challenging. This is where
containerization comes into play. Containers provide lightweight, portable, and isolated environments for running
applications, making it easier to package, deploy, and manage microservices at scale. Docker, one of the most
popular containerization platforms, has revolutionized the way developers build, ship, and run applications.

What You'll Learn

In this book, we'll start by covering the fundamentals of microservices architecture and Docker containerization.
We'll then guide you through the process of building and deploying microservices using a variety of technologies,
including .NET Core, Node.js, React.js, and SQL databases. Along the way, you'll learn how to:

Containerize microservices using Docker.

Orchestrate containers with Docker Compose.

Implement authentication and authorization using Keycloak.

Build web applications with popular frameworks like .NET Core MVC and React.js.

Set up and manage databases within containers using SQL Server and PostgreSQL.

Deploy and scale microservices in a production environment.

Each chapter includes practical, hands-on tutorials and real-world examples to help reinforce your understanding of
the concepts covered. By the end of this book, you'll have the knowledge and skills to design, build, and deploy
microservices-based applications with confidence.

Who This Book Is For

This book is designed for developers, architects, and DevOps engineers who are interested in adopting
microservices architecture using containerization technology. Whether you're new to microservices or looking to
expand your knowledge, this book will provide you with the essential tools and techniques to succeed in today's
growing software development landscape.

Developers:

If you're a developer looking to moving from traditional monolithic architectures to microservices, this book will
provide you with the necessary knowledge and practical skills to design, develop, and deploy microservices-based
applications using containerization technology.

Whether you specialize in a specific programming language or framework, the hands-on tutorials and real-world
examples in this book will help you gain a deeper understanding of how to implement microservices using a
variety of technologies, including .NET Core, Node.js, React.js, SQL databases, and more.

Architects:

For architects responsible for designing and planning the architecture of modern applications, this book will serve
as a comprehensive guide to understanding the principles, patterns, and best practices of microservices
architecture.

You'll learn how to design scalable, resilient, and maintainable systems using microservices and containerization
technology, and how to address common challenges such as service discovery, communication, and data
management in distributed environments.

DevOps Engineers:

If you're a DevOps engineer tasked with managing the deployment, scaling, and monitoring of microservices-
based applications, this book will help you with the necessary skills to leverage containerization tools like Docker
and orchestration platforms like Kubernetes.

You'll learn how to automate the deployment process, implement continuous integration and continuous delivery
(CI/CD) pipelines, and ensure the reliability and performance of microservices in production environments.

Students and Researchers:

This book can also be valuable for students and researchers studying software engineering, and cloud computing.
It provides a practical, hands-on approach to learning about microservices architecture and containerization
technology, with real-world examples and case studies to illustrate key concepts.

Key Benefits of Reading This Book:

"Building Microservices with Containers: A Practical Guide" offers a lot of benefits to readers at various stages of
their application development journey in understanding and implementing microservices architecture with
containerization technology. Here are some key benefits you can expect from reading this book:

Hands-On Tutorials:

Benefit from step-by-step tutorials and real-world examples that guide you through the process of building and
deploying microservices using Docker containers.

Gain practical experience by working on hands-on exercises and projects designed to reinforce your learning and
enhance your skills.

Diverse Technology Stack:

Explore a diverse range of technologies and frameworks, including .NET Core, Node.js, React.js, SQL databases,
Docker, and Kubernetes.

Learn how to choose the right tools and technologies for your specific use case, and how to integrate them
effectively to build scalable and resilient applications.

Transition from Monolithic to Microservices:

Understand the benefits and challenges of transitioning from monolithic architectures to microservices, and how
to plan and execute a successful migration strategy.

Learn how to decompose monolithic applications into smaller, loosely-coupled services, and how to leverage
containerization to improve scalability, flexibility, and resilience.

Whether you're a developer, architect, DevOps engineer, student, or researcher, "Building Microservices with
Containers: A Practical Guide" offers valuable insights, practical skills, and career advancement opportunities that
will empower you to succeed in today's dynamic and fast-paced software development landscape.

Hands-On Labs

Here is the high-level list of labs we will cover in this chapter:

Lab-1: Getting Started with Microservices - In this lab, we'll introduce you to the concept of microservices and
explain their importance in modern application development. You'll gain a high-level understanding of microservices
architecture and its benefits.

Lab-2: Getting Started with Docker - Here, we'll look into Docker, the modern containerization technology. You'll learn
how to install docker, run your first container, and explore basic docker commands.

Lab-3: Create your First Containerized Microservice with .NET Core - This lab guides you through creating a
microservice using .NET Core and containerizing it with Docker. You'll learn how to write Dockerfiles and build
container images for .NET Core microservices.

Lab-5: Create your Second Containerized Microservice with Node.js - In this lab, we switch gears to Node.js and
create another microservice. You'll containerize a Node.js-based microservice and understand the differences
compared to .NET Core.

Lab-6: Create your First Containerized Website using ASP.NET Core MVC - Now, it's time to create a containerized
website using ASP.NET Core MVC. You'll build a web application, package it as a Docker image, and run it as a
container.

Lab-7: Create your Second Containerized Website using React JS - In this lab, we'll focus on front-end development
by creating a React.js-based website. You'll containerize a React application and understand how to work with front-
end containers.

Lab-8: Create your First Database with SQL Server - Databases are an essential part of microservices. In this lab,
we'll set up a SQL Server database within a container. You'll learn how to create and connect to containerized
databases.

Lab-9: Create your Second Database with PostgreSQL - PostgreSQL is another popular database choice. This lab
guides you through running PostgreSQL in a docker container and executing scripts. You'll understand how to work
with different database engines within containers.

Lab-10: Running Keycloak application in a Docker Container - External services play a important role in
microservices. In this lab, we'll run Keycloak application, an identity and access management system, in a Docker
container. You'll configure and interact with Keycloak within the containerized environment.

Lab-11: Running Drupal website in a Docker Container - Continuing with external services, we'll set up Drupal
website, a content management system, in a Docker container. You'll explore how to work with content management
systems within containers.

These hands-on labs provide a practical foundation for building and containerizing microservices. By the end of
these labs, you'll have hands-on experience with various technologies and a clear understanding of how to create
and run microservices and external services in containers. This knowledge will be invaluable as we progress through
the chapters and explore more advanced microservices concepts and deployment strategies.

Categories of Labs:

Labs in this Chapter are categorized into four areas, these categories provide a structured approach to learning
containerization across different aspects of web development, from APIs and websites to databases and external
services. By completing labs in each category, participants will gain comprehensive knowledge and skills essential
for modern application development practices.

Creating Containerized APIs (API Development)

Creating Containerized Websites (Website Development)

Setting Up Databases in Containers (Database Containers)

Running External Services in Docker Containers (External Services)

Creating Containerized APIs

Labs created within this category, you'll learn how to create containerized APIs using technologies like .NET Core
Web API, Node.js.

.NET Core Web API:

1. Introduction to .NET Core Web API: We'll start by introducing you to .NET Core Web API, a cross-platform
framework for building Restful services.

2. Setting Up an .NET Core Web API Project: We'll guide you through setting up a new .NET Core Web API project.

3. Containerization with Docker: You'll learn how to package your .NET Core Web API as a Docker container. We'll
provide guidance on creating a Dockerfile for your web application.

4. Running the Containerized .NET Core Web API: You'll see how to run your containerized .NET Core Web API
locally and understand how containers simplify deployment.

Node.js APIs:

1. Introduction to Node.js: Node.js is a popular JavaScript library for building Restful services. We'll introduce you
to Node.js and explain its role in modern Rest APIs development.

2. Creating a Node.js Rest API: You'll learn how to create a Node.js API from scratch.

3. Containerization with Docker: Similar to .NET Core Web API, we'll guide you through containerizing your Node.js
API. You'll create a Dockerfile for your Restful service.

4. Running the Containerized Node.js API: You'll see how to run your containerized Node.js API locally.

By the end of these labs, you'll have hands-on experience with .NET Core Web API and Node.js along with the
knowledge of how to containerize web applications. These skills are essential as we move forward to deploy these
containerized websites alongside microservices in later chapters.

Creating Containerized Websites

Labs created within this category, you'll learn how to create containerized websites using technologies like ASP.NET
Core, MVC and React.js.

ASP.NET Core MVC:

1. Introduction to ASP.NET Core MVC: We'll start by introducing you to ASP.NET Core MVC, a cross-platform
framework for building web applications. You'll understand its role in creating dynamic web content.

2. Setting Up an ASP.NET Core MVC Project: We'll guide you through setting up a new ASP.NET Core MVC project.

3. Containerization with Docker: You'll learn how to package your ASP.NET Core MVC application as a Docker
container. We'll provide guidance on creating a Dockerfile for your web application.

4. Running the Containerized ASP.NET Core MVC Application: You'll see how to run your containerized ASP.NET
Core MVC application locally and understand how containers simplify deployment.

React.js:

1. Introduction to React.js: React.js is a popular JavaScript library for building user interfaces. We'll introduce you
to React.js and explain its role in modern web development.

2. Creating a React.js Application: You'll learn how to create a React.js application from scratch.

3. Containerization with Docker: Similar to ASP.NET Core MVC, we'll guide you through containerizing your React.js
application. You'll create a Dockerfile for your web app.

4. Running the Containerized React.js Application: You'll see how to run your containerized React.js application
locally.

By the end of these labs, you'll have hands-on experience with ASP.NET Core MVC and React.js, along with the
knowledge of how to containerize web applications. These skills are essential as we move forward to deploy these
containerized websites alongside microservices in later chapters.

Setting Up Databases in Containers

Labs created within this category, we'll learn setting up databases within containers for microservices data storage.
You'll learn how to create containerized database instances using SQL Server and PostgreSQL.

Microservices often rely on databases to store and manage data. Containerizing databases offers numerous
advantages, such as isolation, portability, and versioning. In this section, we'll focus on two popular database
systems: SQL Server and PostgreSQL.

SQL Server:

1. Introduction to SQL Server: We'll introduce you to SQL Server, a robust relational database management system
(RDBMS) developed by Microsoft.

2. Containerization with Docker: You'll learn how to containerize SQL Server by pulling an official SQL Server
Docker image from the Azure Container registry or Docker Hub.

3. Running SQL Server in a Docker Container: We'll guide you through running a SQL Server container, configuring
database settings, and connecting to the containerized SQL Server instance.

4. Data Management: You'll explore data management tasks within a containerized SQL Server, such as creating
databases, tables, and performing CRUD (Create, Read, Update, Delete) operations.

5. Connecting to database locally: Finally you'll explore different tools like SQL Server Management Studio (SSMS)
and Azure data studio for connecting to containerized SQL Server database.

PostgreSQL:

1. Introduction to PostgreSQL: We'll introduce you to PostgreSQL, a powerful open-source relational database
system known for its scalability and extensibility.

2. Containerization with Docker: You'll learn how to containerize PostgreSQL by pulling an official PostgreSQL
Docker image from the Docker Hub.

3. Running PostgreSQL in a Docker Container: We'll guide you through running a PostgreSQL container, configuring
database settings, and connecting to the containerized PostgreSQL instance.

4. Data Management: You'll explore data management tasks within a containerized PostgreSQL database,
including creating databases, tables, and executing SQL queries.

5. Connecting to database locally: Finally you'll explore different tools like PSQL and Pgadmin4 for connecting to
containerized PostgreSQL database.

By the end of these labs, you'll have hands-on experience with containerized SQL Server and PostgreSQL databases,
understanding their role in microservices data storage. These skills are important as you proceed through the
chapters, where microservices will interact with these containerized databases to retrieve and store data.

Running External Services in Containers

Labs created within this category, we'll learn integration of external services into your microservices architecture.
You'll learn how to run external services like Keycloak and Drupal in Docker containers, enhancing the capabilities of
your microservices.

External services play a importent role in microservices architecture, providing essential functionalities such as
authentication and content management. Containerizing these external services offers several advantages, including
consistency and simplified deployment. In this section, we'll focus on two prominent external services: Keycloak and
Drupal.

Keycloak:

1. Introduction to Keycloak: Keycloak is an open-source identity and access management system. We'll introduce
you to Keycloak and explain its significance in microservices authentication.

2. Containerization with Docker: You'll learn how to containerize Keycloak by pulling an official Keycloak Docker
image from the Docker Hub.

3. Running Keycloak in a Docker Container: We'll guide you through running a Keycloak container, configuring
realms, users, and roles within the containerized Keycloak instance.

4. Testing the Keycloak Application Locally: Finally you'll see how to browse your containerized Keycloak
application locally and login into admin portal and intacting with Keycloak application.

Drupal:

1. Introduction to Drupal: Drupal is a popular open-source content management system (CMS). We'll introduce you
to Drupal and its role in managing content for microservices.

2. Containerization with Docker: You'll learn how to containerize Drupal by pulling an official Drupal Docker image
from the Docker Hub.

3. Running Drupal in a Docker Container: We'll guide you through running a Drupal container, setting up a website,
and managing content within the containerized Drupal instance.

4. Testing the Drupal Website Locally: Finally you'll see how to browse your containerized Drupal Website locally
and login into drupal portal and intacting with drupal website.

By the end of these labs, you'll have hands-on experience with containerized Keycloak and Drupal instances,
understanding how to integrate them seamlessly into your microservices ecosystem. These skills are essential as
you proceed through the chapters, where microservices will rely on these external services for authentication,
authorization, and content management.

Chapter-1: Getting Started with Microservices

Overview

Welcome to the first chapter of our book. In this chapter, we will begin our journey by understanding microservices
architectures and how they are different comparing with traditional monolithic architectures. We'll also learn the
advantages of the microservices architectures, including scalability, flexibility, and easier maintenance. we will also
learn challenges with microservices and considerations that need to be carefully addressed, key technologies and
communication patterns. Finally we will perform four tasks such as identifying list of microservices, git repos
needed, create org and project in azure devops to continue our journey in this book.

Objective

In this exercise, our objective is to accomplish and learn the following tasks:

What are Microservices?

Microservices vs Monolithic Architectures

Advantages of Microservices

Challenges and Considerations

Key Technologies and Tools

Microservices Communication

Domain-Driven Design (DDD)

Task-1: Identify Microservices for the book

Task-2: Identify the List of Git Repositories Needed

Task-3: Create new Azure DevOps Organization

Task-4: Create new Azure DevOps Project

What are Microservices?

Microservices are architectural style that structures an application as a collection of small, independent, and
loosely coupled services. These services, known as microservices , are designed to be self-contained and focused
on specific functions or features of the application. Unlike monolithic applications, where all components are tightly
integrated into a single codebase, microservices allow for the decomposition of an application into smaller,
manageable parts.

Microservices vs Monolithic Architectures

Monolithic Architectures:

In a monolithic architecture, the entire application is built as a single, unified codebase.

All components of the application, including user interfaces, business logic, and data access layers, are tightly
coupled.

Scaling a monolithic application typically involves replicating the entire application, even if only specific parts
require additional resources.

Maintenance and updates often require making changes to the entire codebase, making it challenging to isolate
and fix issues.

Microservices:

Microservices architecture promotes breaking down the application into smaller, independent services.

Each microservice is responsible for a specific application's functionality.

Microservices can be developed, deployed, and scaled independently.

Updates and maintenance are easier to manage, as changes to one microservice do not impact the entire system.

Advantages of Microservices

Microservices architecture offers several advantages, including:

Scalability: Microservices can be easily scaled horizontally to handle increased traffic, ensuring that the system
remains responsive during high-demand periods.

Flexibility: Developers can work on individual microservices without affecting the entire application. This makes it
easier to introduce new features, fix bugs, or update a specific service without disrupting the entire system.

Easy Maintenance: Smaller, self-contained services are typically easier to maintain and manage. Updates and
changes can be isolated to specific microservices, reducing the risk of unintended consequences.

Improved Fault Isolation: When a microservice fails, it usually doesn't bring down the entire system. Failures are
contained within the affected service, minimizing the impact on the overall application.

Technology Agnosticism: Microservices allow you to use different technologies and programming languages for
different services, which can be chosen based on the specific requirements of each service.

Rapid Development: Smaller teams can work independently on microservices, enabling faster development
cycles and quicker time-to-market for new features or products.

Enhanced Testing: Isolated microservices can be tested more thoroughly, leading to better quality assurance and
reduced testing complexity compared to monolithic applications.

Easier Deployment: Smaller, independent services are easier to deploy, reducing the risk of deployment failures
and making it possible to implement continuous integration and continuous delivery (CI/CD) practices.

Challenges and Considerations

While microservices offer numerous advantages, they also come with their set of challenges and considerations that
need to be carefully addressed. Careful planning and architectural decisions are important for realizing the benefits
of microservices while mitigating their challenges.

Challenges of microservices

Complexity: Microservices introduce complexity, as an application is divided into multiple services, each with its
own codebase, data store, and dependencies. Managing the interactions between microservices and ensuring the
overall system's integrity can be challenging.

Data Consistency: Maintaining data consistency in a distributed microservices architecture can be complex. With
each microservice managing its data, ensuring data synchronization and integrity across services is important.

Distributed Systems Issues: Microservices are inherently distributed, which introduces challenges such as
network latency, message serialization, and handling communication failures. Implementing robust error handling
and resilience mechanisms becomes essential.

Operational Complexity: Managing and monitoring a large number of microservices in a production environment
can be operationally complex. Tools and practices for deployment, monitoring, and scaling need to be in place to
ensure smooth operations.

Considerations for Microservices Adoption

Application Complexity: Microservices are well-suited for complex, large-scale applications with multiple modules
or functionalities. For simpler applications, a monolithic architecture may be more appropriate.

Team Structure: Consider your organization's team structure. Microservices often align with small, cross-
functional teams that can own and manage individual microservices. Ensure your teams have the necessary skills
for microservices development and operations.

Scalability and Performance: Microservices can provide scalability benefits, particularly for applications with
varying workloads. Evaluate whether your application requires the ability to scale individual components
independently.

Frequent Updates: If your application requires frequent updates and releases, microservices can support
continuous integration and deployment practices. Ensure you have the necessary CI/CD pipelines and
infrastructure.

Choosing the Right Architecture

The choice between monolithic and microservices architecture depends on various factors, including the complexity
of the application, team structure, scalability requirements, and development speed. Monolithic architectures excel
in simplicity and are suitable for smaller applications with straightforward requirements. Microservices, on the other
hand, offer flexibility and scalability for larger, more complex applications but introduce operational complexities.

Key Technologies and Tools

Microservices development relies on a set of essential technologies and tools that facilitate the creation,
deployment, and management of individual microservices.

Docker: Docker is a containerization platform that allows developers to package applications and their
dependencies into lightweight containers. Docker containers provide consistency in deployment across different
environments, ensuring that microservices run reliably on any system.

DevContainers: DevContainers streamline the development and testing of microservices locally by providing a
controlled, isolated, and consistent environment that enhances collaboration among team members and
simplifies the management of complex microservices ecosystems.

Kubernetes: Kubernetes is a container orchestration platform that automates the deployment, scaling, and
management of containerized applications, including microservices. Kubernetes simplifies the management of
microservices at scale, enabling features like load balancing, auto-scaling, and rolling updates.

API Gateways: API gateways act as a front-end for microservices, providing a unified entry point for clients and
handling tasks such as authentication, rate limiting, and request routing. API gateways simplify client interactions
with microservices, centralize security controls, and enable API versioning and documentation.

Continuous Integration/Continuous Deployment (CI/CD) Tools: CI/CD tools such as Azure DevOps, Argocd,
Helmcharts automate the building, testing, and deployment of microservices, supporting rapid development and
delivery. CI/CD pipelines streamline the development process, allowing for frequent updates and reducing the risk
of errors.

Monitoring and Observability Tools (e.g., Prometheus, Grafana, Jaeger): Monitoring and observability tools
provide insights into the performance, availability, and behavior of microservices, helping to detect and
troubleshoot issues. These tools ensure the reliability of microservices in production by offering real-time
monitoring, logging, and tracing capabilities.

Microservices Communication

Microservices can communicate with each other using different communication patterns, both synchronous and
asynchronous.

Synchronous:

HTTP/HTTPS: Microservices can communicate over standard HTTP/HTTPS protocols, making it easy to create
RESTful APIs or web services. Synchronous communication is suitable for scenarios where immediate responses
are required.

gRPC: gRPC is a high-performance, language-agnostic remote procedure call (RPC) framework that allows
microservices to communicate efficiently. It is ideal for scenarios where low-latency, binary-encoded
communication is needed.

Asynchronous:

Message Queues (e.g., RabbitMQ, Apache Kafka): Microservices can exchange messages through message
queues or publish-subscribe systems. Asynchronous communication is useful for decoupling services and
handling background tasks or event-driven scenarios.

Event Sourcing and Event-driven Architecture: In event-driven architecture, microservices issue and consume
events to communicate changes or trigger actions. This pattern is beneficial for building scalable, loosely coupled
systems that respond to real-time events.

Domain-Driven Design (DDD)

Domain-Driven Design (DDD) is a set of principles, patterns, and techniques for designing applicatio with a focus on
the domain of the problem being solved. In the context of microservices architecture, DDD plays a importantent role
in helping you define the boundaries of your microservices and ensure that they align with your business domain.
Here's how DDD techniques can be applied in microservices architecture:

Bounded Contexts:In DDD, a bounded context is a specific boundary within which a domain model is defined and
applicable. In microservices, each microservice typically corresponds to a bounded context. Bounded contexts
ensure that each microservice has a well-defined scope and encapsulates a specific aspect of the business
domain.

Aggregates: Aggregates in DDD represent a cluster of domain objects treated as a single unit. In microservices,
an aggregate can be considered a microservice that manages a set of related entities. Microservices encapsulate
aggregates and provide APIs for manipulating them. This helps maintain data consistency and isolation.

Entities and Value Objects: DDD distinguishes between entities (objects with a distinct identity) and value objects
(objects with no distinct identity). In microservices, entities and value objects are used to model domain concepts
within the microservice's scope, helping to define data structures and behavior.

Context Mapping: Context mapping in DDD deals with defining relationships and interactions between bounded
contexts. It helps manage the integration points between different parts of the system. In microservices
architecture, context mapping is essential for specifying how microservices interact and communicate with each
other, either through APIs or messaging.

Task-1: Identify Microservices for the book

To fully explore the microservices architecture in this book, we will create several containerized microservices and
microfrontend applications and couple of databases. These applications will allow us to demonstrate real-world
scenarios and provide a practical understanding of microservices implementation. In this case study, we will create
the following microservices, which will be developed in the upcoming labs. we have purposely selected diverse
options to ensure a broader learning experience.

Microservice/Website/Database Technology Used Name

First Microservice .NET Core Web API (C#) aspnet-api

Microservice/Website/Database Technology Used Name

Second Microservice Node.js (Node) nodejs-api

First Website ASP.NET Core MVC (C#) aspnet-app

Second Website React.js (Node) react-app

First Database SQL Server sqlserver-db

Second Database PostgreSQL postgresql-db

Keycloak Identity and Access Management keycloak-service

Drupal Content Management System drupal-service

for example, here is how the folder structure of our Microservices and MicroFrontend Applications looks like .

If you noticed, each project has its own Dockerfile , indicating that all these applications will be containerized and
ready for deployment to a Kubernetes cluster.

Microservices/

├── aspnet-api/

│ ├── Controllers/

│ ├── Models/

│ ├── appsettings.json

│ ├── Program.cs

│ ├── Startup.cs

│ └── Dockerfile

│ └── aspnet-api.csproj

└── node-api/

├── routes/

├── models/

├── package.json

├── app.js

└── Dockerfile

Websites/

├── aspnet-app/

│ ├── Controllers/

│ ├── Models/

│ ├── Views/

│ ├── appsettings.json

│ ├── Program.cs

│ ├── Startup.cs

│ └── Dockerfile

│ └── aspnet-app.csproj

├── react-app/

│ ├── src/

│ ├── package.json

│ ├── public/

│ └── Dockerfile

│ ├── node_modules/

│ └── README.md

└── ...

Databases/

├── sqlserver-db/

│ ├── tables/

│ ├── procedures/

│ ├── views/

│ ├── functions/

│ └── triggers/

│ └── Dockerfile

|

└── postgresql-db/

├── tables/

├── procedures/

├── views/

├── functions/

|── Dockerfile

└── triggers/

Important

The following diagram shows the conceptual view of the microservices environment

For example:

Task-2: Identify the List of Git Repositories Needed

Once you have determined the list of domains or microservices required for your project, it's time to analyze how
they will be organized within the source control system, such as Git repositories. One important consideration is
determining the number of Git repositories you need.

There are multiple ways to organize source code and pipelines in Azure DevOps Git, and the approach you choose
depends on how you want to manage your source code and pipelines for your microservices architecture while
ensuring ease of maintenance in the future.

In my preference, I recommend creating a separate Git repository for each domain or microservice. Within each
domain, you may have multiple microservices, MicroFrontends, and databases.

For example, let's visualize how the Git structure may look:

Organization1 (Name of your organization)

Project1 (Name of the project)

Repo-1 (for Domain1)

APIs - Create one or more APIs with separate folders

Websites - Create one or more websites with separate folders

Databases - Create one or more databases with separate folders

Repo-2 (for Domain2)

APIs - Create one or more APIs with separate folders

Websites - Create one or more websites with separate folders

Databases - Create one or more databases with separate folders

Repo-3 (for Domain3)

APIs - Create one or more APIs with separate folders

Websites - Create one or more websites with separate folders

Databases - Create one or more databases with separate folders

Project2 (Project2)

Repo-1 (Name of the repository under Project2)

APIs - Create one or more APIs with separate folders

Websites - Create one or more websites with separate folders

Databases - Create one or more databases with separate folders

Repeat this structure as the organization grows and new projects or domains are introduced.

By following this approach, each domain or microservice will have its dedicated Git repository, providing a clear
separation and organization of the source code and related artifacts. This structure facilitates easier maintenance,
collaboration, and version control.

Remember, this is just a sample structure, and you can adapt it based on your organization's specific needs and
preferences.

Visual representation of a sample DevOps Git structure:

By adopting this Git structure, you can effectively manage and scale your microservices projects while ensuring a
clear and organized source control system.

Task-3: Create new Azure DevOps Organization

With the planning and preparation of your Microservices application complete, the next step is to create a DevOps
organization where you can manage the lifecycle of your projects.

To create a new Azure DevOps organization, follow these steps:

1. Sign in to Azure DevOps. - https://dev.azure.com

Organization1

└── Project1

├── Repo-1 (Microservice-1)

│ ├── APIs

│ ├── Websites

│ └── Databases

├── Repo-2 (Microservice-2)

│ ├── APIs

│ ├── Websites

│ └── Databases

├── Repo-3 (Microservice-3)

│ ├── APIs

│ ├── Websites

│ └── Databases

Project2

└── Repo-1

├── APIs

├── Websites

└── Databases

https://dev.azure.com/

2. Click on New organization in the left nav.

3. Enter name of the Organization and create new organization.

Once you have completed these steps, you will have a new Azure DevOps organization that is ready for use. You can
then invite members to join your organization and start creating new projects.

Task-4: Create new Azure DevOps Project

You need a new project in Azure DevOps to manage your source code and other project related activities.

Follow these steps to create a new project in Azure DevOps:

1. Sign in to the Azure DevOps website https://dev.azure.com/ with your Azure DevOps account.

2. Click on the Create a project button.

3. Enter a name for your project and select a process template. The process template determines the default work
item types, source control repository, and other settings for your project.

4. Click the Create project button to create your new project.

5. Follow the screen to configure your project settings, including source control, work item types, and team
members.

6. When you are finished, click the Create button to complete the project creation process.

For example:

Project Name - Microservices

Description - Microservices project will be used to roll out sample microservices applications for
demonstrating microservices architecture.

https://dev.azure.com/

We have created new organization in azure DevOps and created new project so that we can start working on
containerized microservices applications in the next labs.

References

Microsoft MSDN - Microservice architecture style

Microsoft MSDN - Create an organization

Microsoft MSDN - Create a project in Azure DevOps

Microservice Architecture

https://learn.microsoft.com/en-us/azure/architecture/guide/architecture-styles/microservices
https://learn.microsoft.com/en-us/azure/devops/organizations/accounts/create-organization?view=azure-devops
https://learn.microsoft.com/en-us/azure/devops/organizations/projects/create-project?view=azure-devops&tabs=browser
https://microservices.io/patterns/microservices.html

Chapter-2: Exploring Docker Fundamentals

Overview

In this article, we'll explore the basics of Docker, which are like building blocks for understanding how containers
work. Whether you're an experienced coder or just starting out, grasping these basics is essential for easily
deploying applications in containers. These core concepts will come in handy as you continue your learning journey
with docker.

What is Docker?

Docker is a powerful platform that simplifies the process of developing, shipping, and running applications. Docker
uses a technology known as containerization to encapsulate an application and its dependencies into a self-
contained unit called a container . These containers are lightweight, portable, and consistent across different
environments.

Why use Docker?

Docker simplifies the development, deployment, and management of applications, offering an adaptable solution for
modern software development practices. Its popularity comes from from its ability to address challenges related to
consistency, scalability, and efficiency in the software development lifecycle.

Docker has become increasingly popular in the software development and IT industry due to its numerous
advantages. Here are some key benefits of using Docker:

1. Portability: Docker containers encapsulate applications and their dependencies, ensuring consistency across
different environments. This portability eliminates the common problem of "it works on my machine" and
facilitates seamless deployment across various systems.

2. Isolation: Containers provide a lightweight and isolated environment for applications. Each container runs
independently, preventing conflicts between dependencies and ensuring that changes made in one container do
not affect others.

3. Efficiency: Docker's containerization technology enables efficient resource utilization. Containers share the host
OS kernel, making them lightweight compared to traditional virtual machines. This results in faster startup times
and improved performance.

4. Scalability: Docker makes it easy to scale applications horizontally by running multiple instances of containers.
This scalability allows developers to change the workloads and ensures optimal resource utilization.

5. Microservices architecture: Docker is integral to the microservices architecture, where applications are
composed of small, independently deployable services. Containers facilitate the development, deployment, and
scaling of microservices, enabling agility and ease of management.

6. DevOps integration: Docker aligns well with DevOps practices by promoting collaboration between development
and operations teams. Containers can be easily integrated into continuous integration and continuous
deployment (CI/CD) pipelines, streamlining the software delivery process.

7. Community support: Docker's community offers lot of pre-made tools and solutions, helping developers work
faster and learn from others.

8. Security: Docker provides built-in security features, such as isolation and resource constraints, to enhance
application security.

9. Cross-platform compatibility: Docker containers can run on various operating systems, including Linux,
Windows, and macOS. This cross-platform compatibility is beneficial for teams working in heterogeneous
environments.

Docker concepts

Understanding these basic concepts is essential for effectively working with Docker and leveraging its advantages in
terms of portability, scalability, and consistency across different environments. Here are basic concepts of Docker:

Containerization Containerization is a technology that allows you to package an application and its
dependencies, including libraries and configuration files, into a single container image.

Images An image is a lightweight, standalone, and executable package that includes everything needed to run a
piece of software, including the code, runtime, libraries, and system tools. Docker images are used to create
containers. They are built from a set of instructions called a Dockerfile.

Dockerfile A Dockerfile is a text file that contains a set of instructions for building a Docker image. It specifies the
base image, adds dependencies, copies files, and defines other settings necessary for the application to run.

Containers Containers are instances of Docker images. They run in isolated environments, ensuring that the
application behaves consistently across different environments. Containers share the host OS kernel but have
their own file system, process space, and network interfaces.

Registries Docker images can be stored and shared through registries. The default registry is Docker Hub, but
private registries can also be used. Registries allow versioning, distribution, and collaboration on Docker images.

Docker compose Docker Compose is a tool for defining and running multi-container Docker applications. It allows
you to define a multi-container application in a single file, specifying services, networks, and volumes.

Docker engine Docker Engine is the core component that manages Docker containers. It includes a server, REST
API, and a command-line interface (CLI). The Docker daemon runs on the host machine, and the Docker CLI
communicates with it to build, run, and manage containers.

Volumes Volumes provide a way for containers to persist data outside their lifecycle. They can be used to share
data between containers or to persist data even if a container is stopped or removed.

Networking Docker provides networking capabilities that allow containers to communicate with each other or
with the external world. Containers can be connected to different networks, and ports can be mapped between
the host and the containers.

Container orchestration

Whether managing a small cluster or a large-scale production environment, adopting container orchestration is
crucial for containerized applications. Here are some container orchestrations:

Kubernetes: Kubernetes is the most widely adopted container orchestration platform. It automates the
deployment, scaling, and management of containerized applications, providing a robust and extensible
framework.

Docker Swarm: Docker Swarm is a native clustering and orchestration solution provided by Docker. While it may
not be as feature-rich as Kubernetes, it offers simplicity and seamless integration with Docker.

Amazon ECS: Amazon Elastic Container Service (ECS) is a fully managed container orchestration service
provided by AWS. It integrates with other AWS services and is suitable for users already utilizing the AWS
ecosystem.

Azure Kubernetes Service (AKS): AKS is a managed Kubernetes service offered by Microsoft Azure. It simplifies
the deployment and management of Kubernetes clusters in the Azure cloud.

Docker Desktop

Docker Desktop is a powerful tool that provides a user-friendly interface and environment for developing, building,
and testing applications using Docker containers on local machine.

Docker Desktop provides a convenient environment for developers to work with containers on their personal
machines.

Install Docker

Here are the steps to install Docker on a different operating systems:

Windows:

Download Docker Desktop:

Visit the Docker Desktop for Windows page.

Click on the "Download for Windows" button.

Follow the on-screen instructions to download the installer.

Install Docker Desktop:

Run the installer that you downloaded.

Follow the installation wizard, accepting the default options.

The installer may require you to restart your computer.

Enable Hyper-V (Windows 10 Pro/Enterprise):

https://www.docker.com/products/docker-desktop

If you're running Windows 10 Pro or Enterprise, Docker Desktop will use Hyper-V for virtualization. Ensure that
Hyper-V is enabled in the Windows Features.

Start Docker Desktop:

Once installed, start Docker Desktop from the Start Menu.

The Docker icon will appear in the system tray when Docker Desktop is running.

macOS:

Download Docker Desktop:

Visit the Docker Desktop for Mac page.

Click on the "Download for Mac" button.

Follow the on-screen instructions to download the installer.

Install Docker Desktop:

Run the installer that you downloaded.

Drag the Docker icon to the Applications folder.

Launch Docker from Applications.

Start Docker Desktop:

Once installed, Docker Desktop should start automatically.

The Docker icon will appear in the menu bar when Docker Desktop is running.

Verify Docker install:

To verify that Docker is installed correctly, open a terminal and run the following command:

If you notice this, it indicates that your Docker is not in a running status.

docker --version

or

docker version

error during connect: this error may indicate that the docker daemon is not running: Get

"http://%2F%2F.%2Fpipe%2Fdocker_engine/v1.24/version": open //./pipe/docker_engine: The system

cannot find the file specified.

Client:

Cloud integration: v1.0.35

Version: 24.0.2

API version: 1.43

Go version: go1.20.4

Git commit: cb74dfc

Built: Thu May 25 21:53:15 2023

OS/Arch: windows/amd64

Context: default

https://www.docker.com/products/docker-desktop

After Docker desktop is started and if everything is set up correctly, you should see following message indicating
that your Docker installation is working.

Docker is now installed on your machine, and you can start using it to containerize your applications.

Docker Commands

For more comprehensive details on Docker commands, please refer to the Docker Commands Cheat Sheet on our
website.

Conclusion

Docker and containerization have changed the way we build and use application development. Now that you
understand the basics of Docker, you're ready to dive deeper. Docker is straightforward and flexible, making it a great
tool for developers. It ensures that your application works the same way in different situations, keeps things
separate, and easily grows with your needs. So, go ahead and start your journey with containers.

References

Getting started guide

Client:

Cloud integration: v1.0.35

Version: 24.0.2

API version: 1.43

Go version: go1.20.4

Git commit: cb74dfc

Built: Thu May 25 21:53:15 2023

OS/Arch: windows/amd64

Context: default

Server: Docker Desktop 4.21.1 (114176)

Engine:

Version: 24.0.2

API version: 1.43 (minimum version 1.12)

Go version: go1.20.4

Git commit: 659604f

Built: Thu May 25 21:52:17 2023

OS/Arch: linux/amd64

Experimental: false

containerd:

Version: 1.6.21

GitCommit: 3dce8eb055cbb6872793272b4f20ed16117344f8

runc:

Version: 1.1.7

GitCommit: v1.1.7-0-g860f061

docker-init:

Version: 0.19.0

GitCommit: de40ad0

https://anjikeesari.com/developertools/cheatsheets/docker-cheat-sheet/
https://docs.docker.com/get-started/

Docker images

Docker Documentation

Docker Hub

https://hub.docker.com/search?q=
https://docs.docker.com/
https://hub.docker.com/

Chapter-3: Getting Started with Docker

Docker is a platform for developing, shipping, and running applications in containers. Containers allow you to
package an application and its dependencies into a single unit, making it easy to deploy consistently across different
environments.

In this lab, I will guide you through the process of creating Docker images, containers, and finally accessing the
sample application in the web browser.

If you are new to Docker and want to learn its fundamental concepts, please visit our website. - Exploring Docker
Fundamentals

Objective

In this exercise, our objective is to accomplish and learn the following tasks:

1. Step 1: Get the Sample Application

2. Step 2: Create Docker Image

3. Step 3: Create Docker Container

4. Step 4: Port Binding

5. Step 5: Browse the Frontend Application

6. Step 6: View Docker Logs

7. Step 7: Docker Commands

Prerequisites

Before starting this lab, ensure you have the following prerequisites in place:

Visual Studio Code : - Visual Studio Code Downloads.

Docker desktop : - Docker Downloads.

Git Client tool: - Git Downloads.

Verify the docker installation by running following commands:

Step 1: Get the Sample Application

docker version

or

docker --version

or

docker -v

https://anjikeesari.com/articles/docker-fundamentals/
https://anjikeesari.com/articles/docker-fundamentals/
https://code.visualstudio.com/download
https://docs.docker.com/get-docker/
https://git-scm.com/downloads

To begin, you'll need a sample application to work with. You can either use an existing application or create a simple
one.

In this task, we'll start by searching for an image to run locally. For example, we'll use the Nginx image from Docker
Hub using the following URL: Docker Hub Search

Step 2: Create Docker Image

Now that we've identified the image we want to use, let's pull it from Docker Hub into our local Docker Desktop and
run it locally.

List Docker images from Docker Desktop:

Step 3: Create Docker Container

docker pull nginx

output

Using default tag: latest

latest: Pulling from library/nginx

a5573528b1f0: Pull complete

8897d65c8417: Pull complete

fbc138d1d206: Pull complete

06f386eb9182: Pull complete

aeb2f3db77c3: Pull complete

64fb762834ec: Pull complete

e5a7e61f6ff4: Pull complete

Digest: sha256:4c0fdaa8b6341bfdeca5f18f7837462c80cff90527ee35ef185571e1c327beac

Status: Downloaded newer image for nginx:latest

docker.io/library/nginx:latest

docker images

output

REPOSITORY TAG IMAGE ID CREATED SIZE

nginx latest 6c7be49d2a11 2 months ago 192MB

https://hub.docker.com/search?q=
http://127.0.0.1:8000/micros-k8s/microservices/images/docker/image-0.png
http://127.0.0.1:8000/micros-k8s/microservices/images/docker/image-0.png

In this step, we'll create a Docker container by running the docker run command for the image.

Open a new terminal and run the following command to list containers:

You can watch the container logs in the first terminal.

To exit the container, press Ctrl + C .

docker run nginx

output

/docker-entrypoint.sh: /docker-entrypoint.d/ is not empty, will attempt to perform configuration

/docker-entrypoint.sh: Looking for shell scripts in /docker-entrypoint.d/

/docker-entrypoint.sh: Launching /docker-entrypoint.d/10-listen-on-ipv6-by-default.sh

10-listen-on-ipv6-by-default.sh: info: Getting the checksum of /etc/nginx/conf.d/default.conf

10-listen-on-ipv6-by-default.sh: info: Enabled listen on IPv6 in /etc/nginx/conf.d/default.conf

/docker-entrypoint.sh: Sourcing /docker-entrypoint.d/15-local-resolvers.envsh

/docker-entrypoint.sh: Launching /docker-entrypoint.d/20-envsubst-on-templates.sh

/docker-entrypoint.sh: Launching /docker-entrypoint.d/30-tune-worker-processes.sh

/docker-entrypoint.sh: Configuration complete; ready for start up

2024/01/15 04:27:56 [notice] 1#1: using the "epoll" event method

2024/01/15 04:27:56 [notice] 1#1: nginx/1.25.3

2024/01/15 04:27:56 [notice] 1#1: built by gcc 12.2.0 (Debian 12.2.0-14)

2024/01/15 04:27:56 [notice] 1#1: OS: Linux 6.3.13-linuxkit

2024/01/15 04:27:56 [notice] 1#1: getrlimit(RLIMIT_NOFILE): 1048576:1048576

2024/01/15 04:27:56 [notice] 1#1: start worker processes

2024/01/15 04:27:56 [notice] 1#1: start worker process 29

2024/01/15 04:27:56 [notice] 1#1: start worker process 30

2024/01/15 04:27:56 [notice] 1#1: start worker process 31

2024/01/15 04:27:56 [notice] 1#1: start worker process 32

2024/01/15 04:27:56 [notice] 1#1: start worker process 33

dockder ps

output

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES

8d23e3ceb3da nginx "/docker-entrypoint.…" 3 minutes ago Up 2 minutes 80/tcp

lucid_edison

http://127.0.0.1:8000/micros-k8s/microservices/images/docker/image-1.png
http://127.0.0.1:8000/micros-k8s/microservices/images/docker/image-1.png

Alternatively, you can also run the image directly from Docker Hub. Here are the example commands:

Now, you'll see two containers running, one from local Docker Desktop and the second one from the remote Docker
Hub registry.

2024/01/15 04:28:00 [notice] 1#1: signal 28 (SIGWINCH) received

2024/01/15 04:28:00 [notice] 1#1: signal 28 (SIGWINCH) received

2024/01/15 04:30:50 [notice] 1#1: signal 28 (SIGWINCH) received

2024/01/15 04:30:50 [notice] 1#1: signal 28 (SIGWINCH) received

docker run -d nginx

output

6f5dbcae83bd3ac6a0ea8bdb45f753bf72a723179503d4b4ebce4ddeae2378e2

Now, you can run the following command to see the list of running containers:

docker ps

docker run nginx:1.25.3-alpine

output

Unable to find image 'nginx:1.25.3-alpine' locally

1.25.3-alpine: Pulling from library/nginx

2c03dbb20264: Pull complete

0ed066aadd11: Pull complete

4eeb1ddd7404: Pull complete

9ba8827f116b: Pull complete

2bc60ecca38f: Pull complete

11d942ec6258: Pull complete

fed1b403bb45: Pull complete

392e92e0a8e8: Pull complete

Digest: sha256:a59278fd22a9d411121e190b8cec8aa57b306aa3332459197777583beb728f59

Status: Downloaded newer image for nginx:1.25.3-alpine

/docker-entrypoint.sh: /docker-entrypoint.d/ is not empty, will attempt to perform configuration

/docker-entrypoint.sh: Looking for shell scripts in /docker-entrypoint.d/

/docker-entrypoint.sh: Launching /docker-entrypoint.d/10-listen-on-ipv6-by-default.sh

10-listen-on-ipv6-by-default.sh: info: Getting the checksum of /etc/nginx/conf.d/default.conf

10-listen-on-ipv6-by-default.sh: info: Enabled listen on IPv6 in /etc/nginx/conf.d/default.conf

/docker-entrypoint.sh: Sourcing /docker-entrypoint.d/15-local-resolvers.envsh

/docker-entrypoint.sh: Launching /docker-entrypoint.d/20-envsubst-on-templates.sh

/docker-entrypoint.sh: Launching /docker-entrypoint.d/30-tune-worker-processes.sh

/docker-entrypoint.sh: Configuration complete; ready for start up

2024/01/15 04:39:23 [notice] 1#1: using the "epoll" event method

2024/01/15 04:39:23 [notice] 1#1: nginx/1.25.3

2024/01/15 04:39:23 [notice] 1#1: built by gcc 12.2.1 20220924 (Alpine 12.2.1_git20220924-r10)

2024/01/15 04:39:23 [notice] 1#1: OS: Linux 6.3.13-linuxkit

2024/01/15 04:39:23 [notice] 1#1: getrlimit(RLIMIT_NOFILE): 1048576:1048576

2024/01/15 04:39:23 [notice] 1#1: start worker processes

2024/01/15 04:39:23 [notice] 1#1: start worker process 29

2024/01/15 04:39:23 [notice] 1#1: start worker process 30

2024/01/15 04:39:23 [notice] 1#1: start worker process 31

2024/01/15 04:39:23 [notice] 1#1: start worker process 32

2024/01/15 04:39:23 [notice] 1#1: start worker process 33

docker images from docker desktop

docker containers from docker desktop

you can also run following commnds to see images and containers running locally.

docker ps

output

CONTAINER ID IMAGE COMMAND CREATED STATUS

PORTS NAMES

4df5f0ae77d9 nginx:1.25.3-alpine "/docker-entrypoint.…" About a minute ago Up About a

minute 80/tcp nostalgic_lamarr

6f5dbcae83bd nginx "/docker-entrypoint.…" 6 minutes ago Up 6 minutes

80/tcp modest_hermann

docker image ls

output

REPOSITORY TAG IMAGE ID CREATED SIZE

nginx latest 6c7be49d2a11 2 months ago 192MB

nginx 1.25.3-alpine 74077e780ec7 2 months ago 43.5MB

http://127.0.0.1:8000/micros-k8s/microservices/images/docker/image-2.png
http://127.0.0.1:8000/micros-k8s/microservices/images/docker/image-2.png
http://127.0.0.1:8000/micros-k8s/microservices/images/docker/image-3.png
http://127.0.0.1:8000/micros-k8s/microservices/images/docker/image-3.png

Step 4: Port Binding

Your application is now running inside the Docker container, and you've mapped port 8080 from the container to your
host. This means you can access your application using http://localhost:8080 in your web browser.

Step 5: Browse the Frontend Application

Open your web browser and navigate to http://localhost:8080 to access your Node.js application running in the
Docker container.

Step 6: View Docker Logs

To view the logs of your running container, use the following command:

This will display the logs generated by your application.

docker container ls

output

CONTAINER ID IMAGE COMMAND CREATED STATUS

PORTS NAMES

4df5f0ae77d9 nginx:1.25.3-alpine "/docker-entrypoint.…" 5 minutes ago Up 5 minutes

80/tcp nostalgic_lamarr

6f5dbcae83bd nginx "/docker-entrypoint.…" 10 minutes ago Up 10 minutes

80/tcp modest_hermann

list the containers

docker ps

then stop the container

docker stop 6f5dbcae83bd

docker run -d -p 8080:80 nginx:1.25.3-alpine

output

f21ada11af57b799c9b834d0a6c8e6e1628c6289d64cf65fdc0968cbe94500fd

http://127.0.0.1:8000/micros-k8s/microservices/images/docker/image-4.png
http://127.0.0.1:8000/micros-k8s/microservices/images/docker/image-4.png

Naming the Container:

You can also name the container using the --name flag:

Step 7: Docker Commands

For more comprehensive details on Docker commands, please refer to the Docker Commands Cheat Sheet on our
website.

Conclusion

docker logs f21ada11af57

docker ps -a

output

CONTAINER ID IMAGE COMMAND CREATED STATUS

PORTS NAMES

f21ada11af57 nginx:1.25.3-alpine "/docker-entrypoint.…" 7 minutes ago Up 7 minutes

0.0.0.0:8080->80/tcp nifty_goldberg

4df5f0ae77d9 nginx:1.25.3-alpine "/docker-entrypoint.…" 19 minutes ago Up 19 minutes

80/tcp nostalgic_lamarr

6f5dbcae83bd nginx "/docker-entrypoint.…" 25 minutes ago Exited (0) 10

minutes ago modest_hermann

8d23e3ceb3da nginx "/docker-entrypoint.…" 31 minutes ago Exited (0) 25

minutes ago lucid_edison

docker run --name nginx-app -d -p 8080:80 nginx:1.25.3-alpine

output

58e464680a8da16b717171732fb1b67b678b1c8efb115f9adad8d3257c6cc875

run following command to see the name

docker ps

docker logs nginx-app

http://127.0.0.1:8000/micros-k8s/microservices/images/docker/image-5.png
http://127.0.0.1:8000/micros-k8s/microservices/images/docker/image-5.png
https://anjikeesari.com/developertools/cheatsheets/docker-cheat-sheet/

In summary, this guide introduced you to Docker, a tool that simplifies how we build, package, and run applications.
We've covered essential steps, like getting an example application (nginx), creating Docker images and running
containers. We've also learned how to manage ports, access apps in web browsers, and check what's happening
behind the scenes with Docker logs. Plus, we touched on some common Docker commands.

Docker is a powerful tool for containerization, enabling you to package and deploy applications with ease. By
following these steps, you've created your first Docker application.

References

Getting started guide

Docker images

Docker Documentation

Docker Hub

Nginx Docker Official Images

https://docs.docker.com/get-started/
https://hub.docker.com/search?q=
https://docs.docker.com/
https://hub.docker.com/
https://hub.docker.com/_/nginx

Chapter-4: Create Your First Microservice with .NET Core
Web API

Introduction

Welcome to the first lab in our Microservices chapter. In this lab, we will look into creating a simple RESTful service
using the ASP.NET Core Web API project template.

This lab will demonstrate the process of building a RESTful service and generating a docker container using
Dockerfile. By following this example, you will learn the fundamentals of creating RESTful APIs using the ASP.NET
Core.

Technical Scenario

As a Backend (BE) developer, you have been tasked with creating a RESTful service using .NET Core Web API,
which is one of the services on our microservices list. This lab will serve as your introduction to the Microservices
Architecture, starting with the basics of setting up a repository, creating a small project, and ultimately containerizing
the microservice you build. The containerized microservice will then be pushed to the Azure Container Registry
(ACR).

The primary objective of this lab is to prepare an application for deployment on Kubernetes. The microservices you
create in this lab will be utilized in subsequent labs, such as the creation of DevOps pipelines or the deployment to
Azure Kubernetes Services (AKS). By completing this lab, you will gain a foundational understanding of how
microservices can be developed, containerized, and integrated into a Kubernetes environment.

Objective

In this exercise, our objective is to accomplish and learn the following tasks:

Step-1: Create a new repo in azure DevOps

Step-2: Clone the repository

Step-3: Create a new Web API project

Step-4: Test Web API project

Step-5: Add Dockerfiles to the project

Step-6: Build & Test docker container locally

Step-7: Publish docker container to ACR

Prerequisites

Before starting this lab, ensure you have the following prerequisites in place:

An Organization in Azure DevOps

A Project in Azure DevOps

Create Repository permission

Git client tool

Download and install software for .NET development

Docker and the VS Code Docker extension

Azure Container Registry (ACR)

Architecture Diagram

The following diagram shows the high level steps to create the Restful service using .NET Core.

Step-1: Create a new repo in azure DevOps

We will create a new repository in Azure DevOps to store our project code and related files.

To create a new repository in Azure DevOps, follow these steps:

1. Login into azure DevOps - Azure DevOps

2. Select the project where we want to create the repo

3. Click on Repos left nav link

4. From the repo drop-down, select New repository

5. In the Create a new repository dialog, verify that Git is the repository type and enter a name for the new
repository.

6. You can also add a README and create a .gitignore for the type of code you plan to manage in the repo.

http://127.0.0.1:8000/micros-k8s/microservices/images/image-8.png
http://127.0.0.1:8000/micros-k8s/microservices/images/image-8.png
https://dev.azure.com/

7. I'd prefer to use lower case for all repos (one of the best practice)

Repo name - aspnetapi

When creating repositories in Azure DevOps, it is recommended to use lower case for all repository names. Using lower
case consistently throughout your repositories helps maintain consistency, readability, and ease of navigation within
your projects.

By adhering to this best practice, you ensure that your repository names are uniform and standardized, regardless of
the specific domain or microservice they represent. This practice promotes clarity and reduces the chances of
confusion or inconsistencies when working with multiple repositories within your organization.

For example:

Step-2: Clone the repo from azure DevOps

After creating the repository, we will clone it locally to establish a local working copy of the project.

To clone a repository from Azure DevOps, you will need to have the Git client installed on your local machine. follow
these steps to clone the source code locally:

1. Sign in to the Azure DevOps website Azure DevOps Login with your Azure DevOps account.

2. Navigate to the project that contains the repository you want to clone.

Best-practice

http://127.0.0.1:8000/micros-k8s/microservices/images/image-11.jpg
http://127.0.0.1:8000/micros-k8s/microservices/images/image-11.jpg
https://dev.azure.com/

3. Click on the Repos tab in the navigation menu.

4. Find the repository you want to clone and click on the Clone button.

5. Copy the URL of the repository.

6. Open a terminal window or command prompt on your local machine, and navigate to the directory where you
want to clone the repository.

7. Run the following command to clone the repository:

When prompted, enter your Azure DevOps credentials.

The repository will be cloned to your local machine, and you can start working with the code.

Examples:

Please refer to our Git Cheat-Sheet, which provides a comprehensive list of Git commands and their usage.

Anji Keesari - Git Commands

Step-3: Create a new .NET Core Web API project

Using the .NET Core Web API template, we will create a new project that serves as the foundation for our RESTful
service.

We will be using Visual Studio Code instead of Visual Studio to make things faster and easy and save time and
money.

git clone <repository URL>

C:\Users\anji.keesari>cd C:\Source\Repos

C:\Source\Repos>git clone https://keesari.visualstudio.com/Microservices/_git/aspnetapi

or

cloning from main branch for the first time

git clone git clone https://keesari.visualstudio.com/Microservices/_git/aspnetapi -b main

C:\Source\Repos\Microservices\aspnetapi

cloning from feature branches

git clone https://keesari.visualstudio.com/Microservices/_git/aspnetapi -b develop

C:\Source\Repos\Microservices\aspnetapi

https://anjikeesari.com/developertools/cheatsheets/git-cheat-sheet/
https://anjikeesari.com/developertools/cheatsheets/git-cheat-sheet

I recommend using Visual Studio Code (VS Code) as your preferred development environment instead of Visual Studio.

Visual Studio Code is a lightweight, cross-platform code editor that offers powerful features and extensions tailored for
modern development workflows. It provides a streamlined and customizable interface, allowing you to focus on coding
without unnecessary overhead.

To create a new .NET Core Web API project, you will need to have the .NET Core SDK installed on your machine. You
can download the .NET Core SDK from the .NET website Download .NET.

Once you have the .NET Core SDK installed, follow these steps to create a new .NET Core Web API project:

1. Open a terminal window and navigate to the directory where you want to create your project.

2. Run the dotnet new command to create a new .NET Core Web API project: Let's take a look some useful
dotnet command before creating the project. Use this command to get the dotnet commands help so that

your get idea on how use these commands better.

Use this command to get list of available dotnet project templates

Use this command to actually create new project

Best-practice

dotnet --help

dotnet new --list

output

These templates matched your input:

Template Name Short Name Language Tags

-- ------------------- ---------- --------------

ASP.NET Core Empty web [C#],F# Web/Empty

ASP.NET Core gRPC Service grpc [C#] Web/gRPC

ASP.NET Core Web API webapi [C#],F# Web/WebAPI

ASP.NET Core Web App razor,webapp [C#] Web/MVC/Razor

Pages

ASP.NET Core Web App (Model-View-Controller) mvc [C#],F# Web/MVC

ASP.NET Core with Angular angular [C#] Web/MVC/SPA

ASP.NET Core with React.js react [C#] Web/MVC/SPA

ASP.NET Core with React.js and Redux reactredux [C#] Web/MVC/SPA

Blazor Server App blazorserver [C#] Web/Blazor

Blazor WebAssembly App blazorwasm [C#]

Web/Blazor/WebAssembly/PWA

Class Library classlib [C#],F#,VB Common/Library

Console App console [C#],F#,VB Common/Console

.

.

and more....

https://dotnet.microsoft.com/download

Additional Notes:

3. Here is the example of adding packages to .net projects.

4. Run the following command to restore the project's dependencies:

If you're on a Mac with an Apple M1 chip, you need to install the Arm64 version of the SDK before following above
commands.

Download .NET 7.0.

Check the install typing by running following in terminal

dotnet new webapi -o aspnetapi

or

dotnet new webapi -o aspnetapi --no-https -f net7.0

cd aspnetapi

code .

or

code -r ../aspnetapi

`-o` parameter creates a directory

`--no-https` flag creates an app that will run without an HTTPS certificate

`-f` parameter indicates creation

Output

C:\WINDOWS\system32>cd C:\Source\Repos

C:\Source\Repos>dotnet new webapi -o aspnetapi

The template "ASP.NET Core Web API" was created successfully.

Processing post-creation actions...

Running 'dotnet restore' on C:\Source\Repos\aspnetapi\aspnetapi.csproj...

Determining projects to restore...

Restored C:\Source\Repos\aspnetapi\aspnetapi.csproj (in 247 ms).

Restore succeeded.

C:\Source\Repos>cd aspnetapi

C:\Source\Repos\aspnetapi>code .

dotnet add package Microsoft.EntityFrameworkCore.InMemory

dotnet restore

Mac

https://dotnet.microsoft.com/en-us/download/dotnet/7.0

You should see an output similar to the following if the installation is successful

Step-4: Test the new .NET core Web API project

dotnet build

Run the following command to build the project:

dotnet build command will look for the project or solution file in the current directory and compile the code in it. It
will also restore any dependencies required by the project and create the output files in the bin directory.

dotnet run

Run the following command to start the development server:

dotnet run command will look for the project or solution file in the current directory and compile the code in it.
After compiling, it will run the application and any output will be displayed in the console.

dotnet

anjikeesari@Anjis-MacBook-Pro-2 MyMicroservice % dotnet

Usage: dotnet [options]

Usage: dotnet [path-to-application]

Options:

-h|--help Display help.

--info Display .NET information.

--list-sdks Display the installed SDKs.

--list-runtimes Display the installed runtimes.

path-to-application:

The path to an application .dll file to execute.

dotnet build

output

Microsoft (R) Build Engine version 17.0.1+b177f8fa7 for .NET

Copyright (C) Microsoft Corporation. All rights reserved.

Determining projects to restore...

All projects are up-to-date for restore.

AspNetApi -> C:\Source\Repos\AspNetApi\aspnet-api\bin\Debug\net6.0\AspNetApi.dll

Build succeeded.

0 Warning(s)

0 Error(s)

Time Elapsed 00:00:01.51

You will notice the URL in the output, copy the URL and paste it in your favorite browser. you will get a 404 error.
don’t worry. Just type swagger at the end of the URL and press enter and you will get the following webpage.

https://localhost:7136

https://localhost:7136/swagger/index.html - Swagger URL

https://localhost:7136/api/aspnetapi/v1/weatherforecast - API endpoint URL

If you are able to see this swagger URL in your browser then everything is created and setup as expected.

dotnet run

output

Building...

info: Microsoft.Hosting.Lifetime[14]

Now listening on: https://localhost:7136

info: Microsoft.Hosting.Lifetime[14]

Now listening on: http://localhost:5136

info: Microsoft.Hosting.Lifetime[0]

Application started. Press Ctrl+C to shut down.

info: Microsoft.Hosting.Lifetime[0]

Hosting environment: Development

info: Microsoft.Hosting.Lifetime[0]

Content root path: C:\Source\Repos\AspNetApi\aspnet-api\

http://127.0.0.1:8000/micros-k8s/microservices/images/image-1.jpg
http://127.0.0.1:8000/micros-k8s/microservices/images/image-1.jpg
https://localhost:7136/
https://localhost:7136/swagger/index.html
https://localhost:7136/api/aspnetapi/v1/weatherforecast

Use the following command to stop the application in VS Code

It is time to push your basic project template source into Azure DevOps Git repo.

To maintain good version control and ensure a reliable development process, it is strongly recommended to commit
and push source code changes to your Git repository before proceeding to the next step.

Use these git commands to push the source code.

Step-5: Add Dockerfiles to the API project

Dockerfiles will be added to the project, which provide instructions for building a container image of our Web API
application.

There are multiple way to create Dockerfile depending on your code editor. Here are the step-by-step instructions
for creating a Dockerfile in a .NET Core Web API project:

1. First, open your .NET Core Web API project in Visual Studio code or your favorite code editor.

2. Next, create a new file in the root directory of your project and name it Dockerfile (with no file extension).

3. Open the Dockerfile and add the following code to the file:

ctrl + c

Best-practice

git add .

git commit -am "My fist commit - Create Web API project"

git push

http://127.0.0.1:8000/micros-k8s/microservices/images/image-2.jpg
http://127.0.0.1:8000/micros-k8s/microservices/images/image-2.jpg

This code defines a Docker image that is based on the aspnet:6.0 image from Microsoft's container registry. The
image is divided into four stages:

4. base: sets up the working directory and exposes port 80.

5. build: restores the project dependencies, builds the project in Release mode, and copies the build output to
the /app/build directory.

6. publish: publishes the project in Release mode and copies the published output to the /app/publish directory.

7. final: sets the working directory to /app and copies the published output from the publish stage to the
current directory. It also specifies the entry point for the container, which is the dotnet command with the name
of your project's DLL file.

Step-6: Docker Build & Run

We will build the Docker container locally using the Dockerfiles and ensure that the containerized application
functions as expected.

docker build is a command that allows you to build a Docker image from a Dockerfile. The Dockerfile is a text file
that contains instructions for Docker to build the image, including the base image to use, the files to include, the
commands to run, and the ports to expose.

To build and publish a container image for a .NET Core Web API project, you will need to have Docker installed on
your machine. You can download Docker from the Docker website Get Started with Docker

Once you have Docker installed, follow these steps to build and publish a container for your .NET Core Web API
project:

#See https://aka.ms/containerfastmode to understand how Visual Studio uses this Dockerfile to

build your images for faster debugging.

FROM mcr.microsoft.com/dotnet/aspnet:6.0 AS base

WORKDIR /app

EXPOSE 80

EXPOSE 443

FROM mcr.microsoft.com/dotnet/sdk:6.0 AS build

WORKDIR /src

COPY ["AspNetApi.csproj", "."]

RUN dotnet restore "./AspNetApi.csproj"

COPY . .

WORKDIR "/src/."

RUN dotnet build "AspNetApi.csproj" -c Release -o /app/build

FROM build AS publish

RUN dotnet publish "AspNetApi.csproj" -c Release -o /app/publish

FROM base AS final

WORKDIR /app

COPY --from=publish /app/publish .

ENTRYPOINT ["dotnet", "AspNetApi.dll"]

https://www.docker.com/get-started

1. Open a terminal window and navigate to the root of the project.

2. Run the docker build command to build the Docker image:

output

Verify the new image

if you open the docker desktop you should be able to see the newly created image there.

3. Run the docker run command to start a container based on the image:

output

Wait for the container to start. You should see output in the terminal indicating that the container is listening on port
80. Open the docker desktop to see the newly created container in the docker desktop app

docker build -t sample/aspnet-api:20230226.1 .

[+] Building 9.5s (19/19) FINISHED

=> [internal] load build definition from Dockerfile

0.0s

=> => transferring dockerfile: 878B

0.0s

=> [internal] load .dockerignore

0.0s

=> => transferring context: 374B

..

..

..

=> => naming to docker.io/sample/aspnet-api:20230226.1

docker run --rm -p 8080:80 sample/aspnet-api:20230226.1

info: Microsoft.Hosting.Lifetime[14]

Now listening on: http://[::]:80

info: Microsoft.Hosting.Lifetime[0]

Application started. Press Ctrl+C to shut down.

info: Microsoft.Hosting.Lifetime[0]

Hosting environment: Production

info: Microsoft.Hosting.Lifetime[0]

Content root path: /app/

http://127.0.0.1:8000/micros-k8s/microservices/images/image-3.jpg
http://127.0.0.1:8000/micros-k8s/microservices/images/image-3.jpg
http://127.0.0.1:8000/micros-k8s/microservices/images/image-4.jpg
http://127.0.0.1:8000/micros-k8s/microservices/images/image-4.jpg

Open a web browser and navigate to http://localhost:8080/api/values (or whatever URL corresponds to your Web
API endpoint) to confirm that the Web API is running inside the Docker container.

use these links for testing when you run docker command from vs code

http://localhost:8080/swagger/index.html

http://localhost:8080/api/aspnetapi/v1/heartbeat/ping

http://localhost:8080/api/aspnetapi/v1/weatherforecast

When working with Docker containers, it is recommended to follow a consistent naming convention to ensure clarity
and organization. The following pattern is suggested for naming Docker containers:

Best-practice

docker build -t projectname/domainname/appname:yyyymmdd.sequence .

example:

docker build -t project1/sample/aspnet-api:20230226 .

http://localhost:8080/api/values
http://localhost:8080/swagger/index.html
http://localhost:8080/api/aspnetapi/v1/heartbeat/ping
http://localhost:8080/api/aspnetapi/v1/weatherforecast
http://127.0.0.1:8000/micros-k8s/microservices/images/image-5.jpg
http://127.0.0.1:8000/micros-k8s/microservices/images/image-5.jpg

You've successfully created a Dockerfile and built a Docker image for your .NET Core Web API project. You can now
distribute the Docker image to other machines or deploy it to a cloud service like Azure or AWS.

If you need to clean up containers and images locally in Docker Desktop, you can use the following commands:

Step-7: Push docker container to ACR

Finally, we will publish the built Docker container to the Azure Container Registry (ACR), making it accessible for
deployment and distribution.

Now we've Docker Containers ready for push to Container Registry so that we can use them in future labs.

To publish a Docker container image to Azure Container Registry (ACR), you will need to have the following:

1. Create an Azure Container Registry. If you don't have one, you can create one by following the instructions in the
Azure Portal or using Azure CLI. As part of the Chapter-2 we will create this azure resource, you can come back
to this steps after ACR is created.

2. Log in to your Azure Container Registry using the Docker command-line interface. You can do this by running the
following command:

Tip

To delete all containers including its volumes use,

docker rm -vf $(docker ps -aq)

To delete all the images,

docker rmi -f $(docker images -aq)

azure Login

az login

set the azure subscription

az account set -s "anji.keesari"

Log in to the container registry

az acr login --name acr1dev

To get the login server address for verification

az acr list --resource-group rg-acr-dev --query "[].{acrLoginServer:loginServer}" --output

table

output should look similar to this.

AcrLoginServer

acr1dev.azurecr.io

3. Tag your Docker container with the full name of your Azure Container Registry, including the repository name
and the version tag. You can do this by running the following command:

Use this command to see a list of your current local images

4. Push your Docker container to your Azure Container Registry using the Docker command-line interface. You can
do this by running the following command:

5. Wait for the push to complete. Depending on the size of your Docker container and the speed of your internet
connection, this may take a few minutes.

6. Verify the newly pushed image to ACR.

7. Show the new tags of a image in the acr

docker tag sample/aspnet-api:20230226.1 acr1dev.azurecr.io/sample/aspnet-api:20230226.1

docker images

output

REPOSITORY TAG IMAGE ID CREATED SIZE

acr1dev.azurecr.io/sample/aspnet-api 20230226.1 1bab8ba123ca 2 hours ago 213MB

docker push acr1dev.azurecr.io/sample/aspnet-api:20230226.1

output

The push refers to repository [acr1dev.azurecr.io/sample/aspnet-api]

a592c2e20b23: Pushed

5f70bf18a086: Layer already exists

d57ad0aaee3b: Layer already exists

aff5d88d936a: Layer already exists

b3b2bd456a19: Layer already exists

2540ef4bc011: Layer already exists

94100d1041b6: Layer already exists

bd2fe8b74db6: Layer already exists

20230226.1: digest: sha256:026ec79d24fca0f30bcd90c7fa17e82a2347cf7bc5ac5d762a630277086ed0d1

size: 1995

List images in registry

az acr repository list --name acr1dev --output table

output

Result

mcr.microsoft.com/dotnet/aspnet

mcr.microsoft.com/dotnet/sdk

sample/aspnet-api

You've successfully pushed your Docker container to Azure Container Registry. You can now use the Azure Portal or
Azure CLI to manage your container and deploy them to Azure services like Azure Kubernetes Service (AKS).

Step-8: Pull docker container from ACR

Pull docker container from ACR is something may be helpful during container troubleshooting.

To pull a Docker container from Azure Container Registry (ACR), you need to perform the following steps:

1. Log in to your Azure Container Registry using the Docker command-line interface. You can do this by running the
following command:

2. Pull your Docker container from your Azure Container Registry using the Docker command-line interface. You
can do this by running the following command:

3. Wait for the pull to complete. Depending on the size of your Docker container and the speed of your internet
connection, this may take a few minutes.

az acr repository show-tags --name acr1dev --repository sample/aspnet-api --output table

output

Result

20230220.1

20230226.1

Log in to the container registry

az acr login --name acr1dev

docker pull acr1dev.azurecr.io/sample/aspnet-api:20230226.1

output

20230226.1: Pulling from sample/aspnet-api

01b5b2efb836: Already exists

c4c81489d24d: Already exists

95b82a084bc9: Already exists

bb369c4b0f26: Already exists

c888ac593815: Already exists

14ce87409b2e: Already exists

4f4fb700ef54: Already exists

d15d1be868b7: Already exists

Digest: sha256:026ec79d24fca0f30bcd90c7fa17e82a2347cf7bc5ac5d762a630277086ed0d1

Status: Downloaded newer image for acr1dev.azurecr.io/sample/aspnet-api:20230226.1

acr1dev.azurecr.io/sample/aspnet-api:20230226.1

4. Verify the recently pulled container from ACR to make sure it running as expected

Test the container running following URL

http://localhost:8080/swagger/index.html

You've successfully pulled your Docker container from Azure Container Registry. You can now use the Docker
command-line interface to manage your container and run them locally or deploy them to other environments.

Reference

Microsoft MSDN - Tutorial: Create a web API with ASP.NET Core

Microsoft MSDN - Create and deploy a cloud-native ASP.NET Core microservice

Microsoft MSDN - .NET Tutorial - Your First Microservice

Visual Studio Core - ASP.NET Core in a container

docker run --rm -p 8080:80 acr1dev.azurecr.io/sample/aspnet-api:20230226.1

http://127.0.0.1:8000/micros-k8s/microservices/images/image-6.jpg
http://127.0.0.1:8000/micros-k8s/microservices/images/image-6.jpg
http://127.0.0.1:8000/micros-k8s/microservices/images/image-7.jpg
http://127.0.0.1:8000/micros-k8s/microservices/images/image-7.jpg
http://localhost:8080/swagger/index.html
https://learn.microsoft.com/en-us/aspnet/core/tutorials/first-web-api?view=aspnetcore-7.0&tabs=visual-studio-code
https://learn.microsoft.com/en-us/training/modules/microservices-aspnet-core/?WT.mc_id=dotnet-35129-website
https://dotnet.microsoft.com/en-us/learn/aspnet/microservice-tutorial/intro
https://code.visualstudio.com/docs/containers/quickstart-aspnet-core

Visual Studio Core - Docker in Visual Studio Code

Visual Studio Core - Node.js in a container

github - ASP.NET Core Docker Sample

Containerize a .NET application

https://code.visualstudio.com/docs/containers/overview
https://code.visualstudio.com/docs/containers/quickstart-node
https://github.com/dotnet/dotnet-docker/blob/main/samples/aspnetapp/README.md
https://docs.docker.com/language/dotnet/containerize/

Chapter-5: Create Your Second Microservice with Node.js

Introduction

Welcome to the second lab in our Microservices chapter. In this session, I will guide you through the creation of a
simple RESTful service using the Node.js npx express-generator project template.

This lab aims to illustrate the process of building a RESTful service and generating a Docker container using a
Dockerfile. By following this example, you will gain a solid understanding of the fundamentals involved in creating
RESTful APIs with Node.js.

Technical Scenario

As a Backend (BE) developer, you have been tasked with creating a RESTful service using Node JS, which is one of
the services on our microservices list. This lab will serve as your introduction to the Microservices Architecture,
starting with the basics of setting up a repository, creating a small API project, and ultimately containerizing the
microservice you build. The containerized microservice will then be pushed to the Azure Container Registry (ACR).

The primary objective of this lab is to prepare an application for deployment on Kubernetes. The microservices you
create in this lab will be utilized in subsequent labs, such as the creation of DevOps pipelines or the deployment to
Azure Kubernetes Services (AKS). By completing this lab, you will gain a foundational understanding of how
microservices can be developed, containerized, and integrated into a Kubernetes environment.

Objective

In this exercise, our objective is to accomplish and learn the following tasks:

Step-1: Setup repository in Azure DevOps.

Step-2: Create a new Node.js API project.

Step-3: Test Node.js API project.

Step-4: Add Dockerfiles to the project.

Step-5: Docker build locally.

Step-6: Docker run locally.

Step-7: Publish the Docker container to ACR.

Prerequisites

Before starting this lab, ensure you have the following prerequisites in place:

Node.js and npm: - Node.js Downloads.

https://nodejs.org/en/download/

Docker and the VS Code Docker extension : - Docker Downloads.

Git Client tool: - Git Downloads.

A project in Azure DevOps and Git Repository: Initialize a Git repository for your Node.js application.

Azure Container Registry (ACR)

Architecture Diagram

The following diagram shows the high level steps to create the Rest API using Node JS.

Step-1: Setup repository in Azure DevOps.

For this project, you can either leverage an existing Git repository created in our first chapter or initiate a new one.

To clone an existing repository, execute the following command:

Step-2: Create a new Node JS API project

In this step, we will set up a new Node.js API project using a basic Express application as our example. To expedite
the process, we'll utilize Express's scaffolding tool to generate the necessary directory structure and essential files.

Open your terminal and execute the following commands:

git clone https://keesari.visualstudio.com/Microservices/_git/microservices

$ npx express-generator --no-view src

$ cd src

$ npm install

https://docs.docker.com/get-docker/
https://git-scm.com/downloads
http://127.0.0.1:8000/micros-k8s/microservices/images/image-10.png
http://127.0.0.1:8000/micros-k8s/microservices/images/image-10.png

npx express-generator:

The npx express-generator command initializes the project, creating a structure that includes directories like 'bin' and
'routes'.

npm install:

Ensure you run npm install to set up and configure all required Node.js modules.

This step ensures that your project is equipped with the necessary dependencies, allowing seamless integration with
Docker and efficient containerization of your Node.js application.

folder structure

http://127.0.0.1:8000/micros-k8s/microservices/images/image-3.png
http://127.0.0.1:8000/micros-k8s/microservices/images/image-3.png
http://127.0.0.1:8000/micros-k8s/microservices/images/image-4.png
http://127.0.0.1:8000/micros-k8s/microservices/images/image-4.png

you've established the foundation for your Node.js API project, complete with a standardized directory structure and
essential files.

This should have created a number of files in your directory, including bin and routes directories. Make sure to run
npm install so that npm can get all of your Node.js modules set up and ready to use.

Step-3: Test the Node JS API project

Now, let's verify that our Node.js API project is functioning correctly. We'll initiate the application for the first time,
utilizing the default routes defined in app.js .

Ensure you are in the project directory, and in your terminal, execute the following command to start the application:

This command launches the Node.js application, making it accessible locally.

Open your web browser and navigate to http://localhost:3000

npm start

http://127.0.0.1:8000/micros-k8s/microservices/images/image-5.png
http://127.0.0.1:8000/micros-k8s/microservices/images/image-5.png
http://localhost:3000/

You confirm that your Node.js API project is up and running on your local environment. This preliminary test ensures
the initial functionality of your application before proceeding with additional configurations or containerization.

Step-4: Add Dockerfiles to the MVC project

To seamlessly containerize our Node.js API project, let's create a Dockerfile in the root directory of your project and
incorporate the following code. The Dockerfile provides instructions for building a container image of our Node.js
API.

Read inline comments of the Dockerfile for understanding the Dockerfile instructions

Use the official Node.js image from Docker Hub with a specific version

FROM node:18.16.0-alpine3.17

Create a directory for the application in the container

RUN mkdir -p /opt/app

Set the working directory inside the container to /opt/app

WORKDIR /opt/app

Copy package.json and package-lock.json to the container's working directory

COPY src/package.json src/package-lock.json .

Install Node.js dependencies based on the package.json and package-lock.json

RUN npm install

Copy the entire contents of the 'src' directory to the container's working directory

COPY src/ .

Expose port 3000 to allow external access to the application

EXPOSE 3000

Specify the command to run when the container starts (start the application)

CMD ["npm", "start"]

Note

http://127.0.0.1:8000/micros-k8s/microservices/images/image-2.png
http://127.0.0.1:8000/micros-k8s/microservices/images/image-2.png

Step-5: Docker build locally

We will build the Docker container locally using the Dockerfiles and ensure that the containerized application
functions as expected.

The docker build command is used to build Docker images from a Dockerfile.

output

When you run the docker build command, Docker looks for a Dockerfile in the specified directory (PATH) and
reads the instructions in the file to build a new image.

The Dockerfile contains a series of instructions that define how to build the image, such as copying files, running
commands, and setting environment variables.

Step-6: Docker run locally

docker build -t sample/node-api:20240101.1 .

http://127.0.0.1:8000/micros-k8s/microservices/images/image-6.png
http://127.0.0.1:8000/micros-k8s/microservices/images/image-6.png
http://127.0.0.1:8000/micros-k8s/microservices/images/image-7.png
http://127.0.0.1:8000/micros-k8s/microservices/images/image-7.png

Run the Docker container locally to verify that the application functions correctly within a containerized environment.
This step ensures that the containerized application operates as expected on your local machine.

Run the docker run command to start a container based on the image:

output

if you open the docker desktop you will notice the new image & container started running.

Image

Container

docker run --rm -p 3000:3000 sample/node-api:20240101.1 .

Compiled successfully!

You can now view node-api in the browser.

Local: http://localhost:3000

On Your Network: http://172.17.0.2:3000

Note that the development build is not optimized.

To create a production build, use npm run build.

webpack compiled successfully

Compiling...

Compiled successfully!

webpack compiled successfully

This will start the Node.js application in the Docker container and map the container's port 3000 to your local
machine's port 3000.

Your Node.js application is now running inside a Docker container.

Open your favorite browser and enter the following URL to see the running application in port 3000

http://localhost:3000/

You now have a basic Node.js application up and running. From here, you can continue building out your application
by adding more and more code as per your requirements.

Step-7: Push docker container to ACR

Now that we have Docker containers ready locally, it's time to push them to the Container Registry for future
deployment on Azure Kubernetes Services (AKS). This step is crucial for preparing the container for deployment in a
cloud environment.

To publish a Docker container to Azure Container Registry (ACR), you will need to have the following:

Create an Azure Container Registry. If you don't have one, you can create one by following the instructions in the
Azure Portal or using Azure CLI.

Log in to your Azure Container Registry using the Docker command-line interface. You can do this by running the
following command:

http://localhost:3000/
http://127.0.0.1:8000/micros-k8s/microservices/images/image-2.png
http://127.0.0.1:8000/micros-k8s/microservices/images/image-2.png

list all the Docker images that are available on the local system

Tag your Docker container image with the full name of your Azure Container Registry, including the repository name
and the version tag. You can do this by running the following command:

Push your Docker container image to your Azure Container Registry using the Docker command-line interface. You
can do this by running the following command:

azure Login

az login

set the azure subscription

az account set -s "anji.keesari"

Log in to the container registry

az acr login --name acr1dev

Login Succeeded

To get the login server address for verification

az acr list --resource-group rg-acr-dev --query "[].{acrLoginServer:loginServer}" --output table

output should look similar to this.

AcrLoginServer

acr1dev.azurecr.io

docker images

output

REPOSITORY TAG

IMAGE ID CREATED SIZE

sample/aspnet-app 20230312.1

587f347206bc 8 minutes ago 216MB

.

.

.

docker tag sample/node-api:20240101.1 acr1dev.azurecr.io/sample/node-api:20240101.1

Wait for the push to complete. Depending on the size of your Docker container image and the speed of your internet
connection, this may take a few minutes.

Verify the newly pushed image to ACR.

Show the new tags of a image in the acr

You've successfully pushed your Docker container image to Azure Container Registry. You can now use the Azure
Portal or Azure CLI to manage your container images and deploy them to Azure services like Azure Kubernetes
Service (AKS).

Conclusion

docker push acr1dev.azurecr.io/sample/node-api:20240101.1

Output

The push refers to repository [acr1dev.azurecr.io/sample/node-api]

649a035a1734: Pushed

4061bd2dd536: Pushed

c0257b3030b0: Pushed

912a3b0fc587: Pushed

a36186d93e25: Pushed

a3d997b065bc: Pushed

65d358b7de11: Pushed

f97384e8ccbc: Pushed

d56e5e720148: Pushed

beee9f30bc1f: Pushed

20240101.1: digest: sha256:73f0669d18c6cae79beb81edc8c523191710f9ec4781d590884b46326f9ad6f9 size:

2419

az acr repository list --name acr1dev --output table

Output

Result

mcr.microsoft.com/dotnet/aspnet

mcr.microsoft.com/dotnet/sdk

sample/aspnet-api

sample/aspnet-app

sample/node-api

az acr repository show-tags --name acr1dev --repository sample/node-api --output table

output

Result

20240101.1

So, we've covered Docker and learned how to run a basic Node.js application inside a container. Now, you should feel
confident and ready to create your own Dockerfile, tapping into the cool features that Docker brings to your
development experience.

Reference

Containerize a Node.js application

Dockerizing a Node.js Web Application

https://docs.docker.com/language/nodejs/containerize/
https://semaphoreci.com/community/tutorials/dockerizing-a-node-js-web-application#h-next-steps

Chapter-6: Create Your First Website using .NET Core
MVC Application

Introduction

In our previous labs, we have explored the creation of Microservices to demonstrate the Microservices architecture
pattern. In this lab and the next, we will shift our focus to the MicroFrontend architecture pattern by creating a couple
of MicroFrontend UI applications.

Technical Scenario

As a Frontend (FE) developer, your task is to develop a website or UI application using ASP.NET Core MVC
technology. This application represents one of the small Website (UI) components in our MicroFrontend applications
list.

This lab will guide you through the process of building an ASP.NET Core MVC application. We will begin by creating a
new Git repository or utilizing an existing one. Next, we will generate an MVC project template and proceed to
containerize the UI application. Finally, we will push the containerized UI application to the Azure Container Registry
(ACR) in preparation for deployment to Azure Kubernetes Services (AKS).

The objective is to prepare a UI application for deployment on Kubernetes. The UI applications developed in this lab
will be utilized in subsequent labs, such as the creation of DevOps pipelines or the deployment to Azure Kubernetes
Services.

Objective

In this exercise, our objective is to accomplish and learn the following tasks:

Step-1: Create a new ASP.NET Core Web App (MVC project)

Step-2: Test ASP.NET MVC project

Step-3: Update home page contents [optional]

Step-4: Add Dockerfiles to MVC project

Step-5: Docker Build locally

Step-6: Docker Run locally

Step-7: Publish docker container to ACR

Prerequisites

Before starting this lab, make sure you have the following prerequisites in place:

Clone existing Microservices repo

Download and install software for .NET development

Docker desktop

VS Code Docker extension

Azure Container Registry (ACR)

Architecture Diagram

The following diagram shows the high level steps to create the website using ASP.NET Core MVC.

Step-1: Create a new ASP.NET Core Web App (MVC project)

Create a new ASP.NET Core Web App using the MVC project template. This will serve as the foundation for our UI
application.

To create new ASP.NET Core Web App (Model-View-Controller) project you can use either Visual Studio Code or
Visual Studio 2022 (latest version).

Using Visual Studio Code

Assuming you already have the .NET Core SDK installed in your system, follow these steps to create a new .NET
Core MVC project:

Open Visual Studio Code and open the terminal and use following command to see list of templates.

output

dotnet new --list

http://127.0.0.1:8000/micros-k8s/microservices/images/image-9.png
http://127.0.0.1:8000/micros-k8s/microservices/images/image-9.png

Pick the following template for our MVC project from the list.

Use dotnet new command to create new MVC project

output

Using Visual Studio 2022

In case if you want to use Visual Studio only then, here are the steps to create a new ASP.NET Core Web App using
the Model-View-Controller (MVC) architectural pattern:

Open Visual Studio and select "Create a new project".

In the "Create a new project" window, select "ASP.NET Core Web Application" and click "Next".

Choose a name and location for your project and click "Create".

These templates matched your input:

Template Name Short Name Language Tags

-- ------------------- ---------- ------------------

ASP.NET Core Empty web [C#],F# Web/Empty

ASP.NET Core gRPC Service grpc [C#] Web/gRPC

ASP.NET Core Web API webapi [C#],F# Web/WebAPI

ASP.NET Core Web App razor,webapp [C#] Web/MVC/Razor

Pages

ASP.NET Core Web App (Model-View-Controller) mvc [C#],F# Web/MVC

ASP.NET Core with Angular angular [C#] Web/MVC/SPA

ASP.NET Core with React.js react [C#] Web/MVC/SPA

ASP.NET Core with React.js and Redux reactredux [C#] Web/MVC/SPA

Blazor Server App blazorserver [C#] Web/Blazor

Blazor WebAssembly App blazorwasm [C#]

Web/Blazor/WebAssembly/PWA

Class Library classlib [C#],F#,VB Common/Library

Console App console [C#],F#,VB Common/Console

.

.

and more....

ASP.NET Core Web App (Model-View-Controller) mvc [C#],F# Web/MVC

dotnet new mvc -o aspnet-app

The template "ASP.NET Core Web App (Model-View-Controller)" was created successfully.

This template contains technologies from parties other than Microsoft, see

https://aka.ms/aspnetcore/6.0-third-party-notices for details.

Processing post-creation actions...

Running 'dotnet restore' on C:\Source\Repos\microservices\aspnet-app\aspnet-app.csproj...

Determining projects to restore...

Restored C:\Source\Repos\microservices\aspnet-app\aspnet-app.csproj (in 95 ms).

Restore succeeded.

In the "Create a new ASP.NET Core Web Application" window, select "Web Application (Model-View-Controller)"
and click "Create".

Visual Studio will create a new project for you with the necessary files and folders to get started.

Once the MVC project is created successfully you will see the project folder structure like below:

cd to the new folder here aspnet-app

Step-2: Test the new ASP.NET core Web App project

Perform testing of the ASP.NET MVC project to ensure its functionality and identify any issues or bugs that may need
to be addressed.

Run the following command to build the project:

dotnet build command will look for the project or solution file in the current directory and compile the code in it. It
will also restore any dependencies required by the project and create the output files in the bin directory.

output

cd .\aspnet-app\

dotnet build

http://127.0.0.1:8000/micros-k8s/microservices/images/image-13.jpg
http://127.0.0.1:8000/micros-k8s/microservices/images/image-13.jpg

Run the following command to start the development server:

dotnet run command will look for the project or solution file in the current directory and compile the code in it.
After compiling, it will run the application and any output will be displayed in the console.

output

You will notice the URL in the output, copy the URL and paste it in your favorite browser. https://localhost:7289/

Microsoft (R) Build Engine version 17.0.1+b177f8fa7 for .NET

Copyright (C) Microsoft Corporation. All rights reserved.

Determining projects to restore...

All projects are up-to-date for restore.

aspnet-app -> C:\Source\Repos\microservices\aspnet-app\bin\Debug\net6.0\aspnet-app.dll

Build succeeded.

0 Warning(s)

0 Error(s)

Time Elapsed 00:00:05.07

dotnet run

Building...

info: Microsoft.Hosting.Lifetime[14]

Now listening on: https://localhost:7289

info: Microsoft.Hosting.Lifetime[14]

Now listening on: http://localhost:5023

info: Microsoft.Hosting.Lifetime[0]

Application started. Press Ctrl+C to shut down.

info: Microsoft.Hosting.Lifetime[0]

Hosting environment: Development

info: Microsoft.Hosting.Lifetime[0]

Content root path: C:\Source\Repos\microservices\aspnet-app\

https://localhost:7289/

For the first time if you are able to see this page in your browser that means ASP.NET MVC project is created as
expected.

Use these git commands to push the source code to remote git.

For the simplicity I am creating all the applications in the same repo called microservices but in reality you may need
to follow your organization standards for creating git repos

New folder structure will look like below in the microservices git repo. you will notice the new aspnet-app folder
with MVC project source code.

git add .

git commit -a -m "My fist mvc app commit."

git push --set-upstream origin main

git status

Note

http://127.0.0.1:8000/micros-k8s/microservices/images/image-14.jpg
http://127.0.0.1:8000/micros-k8s/microservices/images/image-14.jpg

Step-3: Update home page contents[Optional]

Let's update our landing page to show .NET version, Operating System, processor, CPU core etc.. this information will
provide us some technical details of the application when we deploy it in our AKS in the upcoming labs.

We are going to update the Index.html file with following code.

Index.html

http://127.0.0.1:8000/micros-k8s/microservices/images/image-15.jpg
http://127.0.0.1:8000/micros-k8s/microservices/images/image-15.jpg

@page

@using System.Runtime.InteropServices

@using System.IO

@using System.Diagnostics

@{

//ViewData["Title"] = "Home page";

var hostName = System.Net.Dns.GetHostName();

var ipList = await System.Net.Dns.GetHostAddressesAsync(hostName);

const long Mebi = 1024 * 1024;

const long Gibi = Mebi * 1024;

GCMemoryInfo gcInfo = GC.GetGCMemoryInfo();

string totalAvailableMemory = GetInBestUnit(gcInfo.TotalAvailableMemoryBytes);

bool cgroup = RuntimeInformation.OSDescription.StartsWith("Linux") &&

Directory.Exists("/sys/fs/cgroup/memory");

string memoryUsage = string.Empty;

string memoryLimit = string.Empty;

if (cgroup)

{

string usage = System.IO.File.ReadAllLines("/sys/fs/cgroup/memory/memory.usage_in_bytes")

[0];

string limit = System.IO.File.ReadAllLines("/sys/fs/cgroup/memory/memory.limit_in_bytes")

[0];

memoryUsage = GetInBestUnit(long.Parse(usage));

memoryLimit = GetInBestUnit(long.Parse(limit));

}

}

<div align="center">

<table class="table table-striped table-hover">

<tr>

<td>.NET version</td>

<td>@RuntimeInformation.FrameworkDescription</td>

</tr>

<tr>

<td>Operating system</td>

<td>@RuntimeInformation.OSDescription</td>

</tr>

<tr>

<td>Processor architecture</td>

<td>@RuntimeInformation.OSArchitecture</td>

</tr>

<tr>

<td>CPU cores</td>

<td>@Environment.ProcessorCount</td>

</tr>

<tr>

<td>Containerized</td>

<td>@(Environment.GetEnvironmentVariable("DOTNET_RUNNING_IN_CONTAINER") is null ?

"false" : "true")</td>

</tr>

<tr>

<td>Memory, total available GC memory</td>

<td>@totalAvailableMemory</td>

</tr>

@if (cgroup)

{

Here is the home page with new details:

<tr>

<td>cgroup memory usage</td>

<td>@memoryUsage</td>

</tr>

<tr>

<td>cgroup memory limit</td>

<td>@memoryLimit</td>

</tr>

}

<tr>

<td>Host name</td>

<td>@hostName</td>

</tr>

<tr>

<td style="vertical-align: top">Server IP address</td>

<td>

@{

foreach (var ip in ipList)

{

@ip

}

}

</td>

</tr>

</table>

</div>

@{

string GetInBestUnit(long size)

{

if (size < Mebi)

{

return $"{size} bytes";

}

else if (size < Gibi)

{

decimal mebibytes = Decimal.Divide(size, Mebi);

return $"{mebibytes:F} MiB";

}

else

{

decimal gibibytes = Decimal.Divide(size, Gibi);

return $"{gibibytes:F} GiB";

}

}

}

Now it is time to commit our source code

Step-4: Add Dockerfiles to the MVC project

This file define the necessary instructions to build Docker images for the application.

Create a Dockerfile in the root directory of the MVC project and copy following code.

git add .

git commit -am "updated landing page"

git push

http://127.0.0.1:8000/micros-k8s/microservices/images/image-16.jpg
http://127.0.0.1:8000/micros-k8s/microservices/images/image-16.jpg

Read inline comments of the Dockerfile for understanding the Dockerfile instructions

Step-5: Docker Build locally

Build Docker images locally using the Dockerfiles added to the MVC project. This process will generate container
images ready for deployment.

The docker build command is used to build Docker images from a Dockerfile. The Dockerfile contains a set of
instructions that Docker uses to create a new image.

-t to specify a name and optionally a tag for the image,

output

#See https://aka.ms/containerfastmode to understand how Visual Studio uses this Dockerfile to

build your images for faster debugging.

Use the official Microsoft ASP.NET Core runtime image as a parent image

FROM mcr.microsoft.com/dotnet/aspnet:6.0 AS base

WORKDIR /app

EXPOSE 80

EXPOSE 443

Copy the project files and restore dependencies

FROM mcr.microsoft.com/dotnet/sdk:6.0 AS build

WORKDIR /src

COPY ["aspnet-app.csproj", "."]

RUN dotnet restore "./aspnet-app.csproj"

Copy the remaining files and build the application

COPY . .

WORKDIR "/src/."

RUN dotnet build "aspnet-app.csproj" -c Release -o /app/build

Publish the application

FROM build AS publish

RUN dotnet publish "aspnet-app.csproj" -c Release -o /app/publish

Final image

FROM base AS final

WORKDIR /app

COPY --from=publish /app/publish .

Start the application

ENTRYPOINT ["dotnet", "aspnet-app.dll"]

Note

docker build -t sample/aspnet-app:20230312.1 .

When you run the docker build command, Docker looks for a Dockerfile in the specified directory (PATH) and
reads the instructions in the file to build a new image. The Dockerfile contains a series of instructions that define
how to build the image, such as copying files, running commands, and setting environment variales.

Error & troubleshooting

In case if you are getting following error while running docker build command, that means the docker desktop is
not running locally. make sure that run the docker desktop locally to fix this issue.

Step-6: Docker Run locally

Run the Docker container locally to verify that the application functions correctly within a containerized environment.
This step ensures that the containerized application operates as expected on your local machine.

Run the docker run command to start a container based on the image:

output

[+] Building 49.9s (18/18) FINISHED

=> [internal] load build definition from Dockerfile

=> => transferring dockerfile: 696B

=> [internal] load .dockerignore

=> => transferring context: 2B

=> [internal] load metadata for mcr.microsoft.com/dotnet/sdk:6.0

=> [internal] load metadata for mcr.microsoft.com/dotnet/aspnet:6.0

.

.

.

=> exporting to image

=> => exporting layers

=> => writing image sha256:587f347206bcc67dafe3c0b53047862f11b6e52b1b61bce15b8432cc3a488e24

=> => naming to docker.io/sample/aspnet-app:20230312.1

error during connect: This error may indicate that the docker daemon is not running.: Post

"http://%2F%2F.%2Fpipe%2Fdocker_engine/v1.24/build?

buildargs=%7B%7D&cachefrom=%5B%5D&cgroupparent=&cpuperiod=0&cpuquota=0&cpusetcpus=&cpusetmems=&cpush

app%3A20230312.1&target=&ulimits=null&version=1": open //./pipe/docker_engine: The system cannot

find the file specified.

docker run --rm -p 8080:80 sample/aspnet-app:20230312.1

if you open the docker desktop you will notice the new container started running.

http://localhost:8080/

warn: Microsoft.AspNetCore.DataProtection.Repositories.FileSystemXmlRepository[60]

Storing keys in a directory '/root/.aspnet/DataProtection-Keys' that may not be persisted

outside of the container. Protected data will be unavailable when container is destroyed.

warn: Microsoft.AspNetCore.DataProtection.KeyManagement.XmlKeyManager[35]

No XML encryptor configured. Key {90c41ec3-18a3-434a-8d4b-1d0cc5f140af} may be persisted to

storage in unencrypted form.

info: Microsoft.Hosting.Lifetime[14]

Now listening on: http://[::]:80

info: Microsoft.Hosting.Lifetime[0]

Application started. Press Ctrl+C to shut down.

info: Microsoft.Hosting.Lifetime[0]

Hosting environment: Production

info: Microsoft.Hosting.Lifetime[0]

Content root path: /app/

warn: Microsoft.AspNetCore.HttpsPolicy.HttpsRedirectionMiddleware[3]

Failed to determine the https port for redirect.

http://127.0.0.1:8000/micros-k8s/microservices/images/image-19.jpg
http://127.0.0.1:8000/micros-k8s/microservices/images/image-19.jpg
http://localhost:8080/

You now have a basic ASP.NET Core Web App using the MVC pattern up and running. From here, you can continue
building out your application by adding more controllers, views, and models as needed.

Step-7: Push docker container to ACR

Publish the Docker container to the Azure Container Registry (ACR) for future deployment to Azure Kubernetes
Services (AKS). This step prepares the container for deployment to the cloud environment.

Now we've Docker Containers ready locally for push to Container Registry so that we can use them in future labs.

To publish a Docker container to Azure Container Registry (ACR), you will need to have the following:

Create an Azure Container Registry. If you don't have one, you can create one by following the instructions in the
Azure Portal or using Azure CLI.

Log in to your Azure Container Registry using the Docker command-line interface. You can do this by running the
following command:

http://127.0.0.1:8000/micros-k8s/microservices/images/image-16.jpg
http://127.0.0.1:8000/micros-k8s/microservices/images/image-16.jpg

list all the Docker images that are available on the local system

output

Tag your Docker container with the full name of your Azure Container Registry, including the repository name and
the version tag. You can do this by running the following command:

Push your Docker container to your Azure Container Registry using the Docker command-line interface. You can do
this by running the following command:

Output

azure Login

az login

set the azure subscription

az account set -s "anji.keesari"

Log in to the container registry

az acr login --name acr1dev

To get the login server address for verification

az acr list --resource-group rg-acr-dev --query "[].{acrLoginServer:loginServer}" --output table

output should look similar to this.

AcrLoginServer

acr1dev.azurecr.io

docker images

REPOSITORY TAG

IMAGE ID CREATED SIZE

sample/aspnet-app 20230312.1

587f347206bc 8 minutes ago 216MB

.

.

.

docker tag sample/aspnet-app:20230312.1 acr1dev.azurecr.io/sample/aspnet-app:20230312.1

docker push acr1dev.azurecr.io/sample/aspnet-app:20230312.1

1. Wait for the push to complete. Depending on the size of your Docker containers and the speed of your internet
connection, this may take a few minutes. 1. Verify the newly pushed image to ACR.

Output

Show the new tags of a image in the acr

output

You've successfully pushed your Docker container to Azure Container Registry. You can now use the Azure Portal or
Azure CLI to manage your container and deploy them to Azure services like Azure Kubernetes Service (AKS).

The push refers to repository [acr1dev.azurecr.io/sample/aspnet-app]

f9c45e227c3a: Pushed

5f70bf18a086: Mounted from sample/aspnet-api

478d6dc381e4: Pushed

355b7bb8c23e: Pushed

ff13768cb51e: Pushed

fe674e2b138c: Pushed

f30d150c0152: Pushed

4695cdfb426a: Pushed

20230312.1: digest: sha256:049b736aa29e9574010dfe1fc2ef5bb44ed76d54757a8f190b967fa0f854567e size:

1995

az acr repository list --name acr1dev --output table

Result

mcr.microsoft.com/dotnet/aspnet

mcr.microsoft.com/dotnet/sdk

sample/aspnet-api

sample/aspnet-app

az acr repository show-tags --name acr1dev --repository sample/aspnet-api --output table

Result

20230312.1

Chapter-7: Create Your Second Website using React.js

Introduction

In this lab, we will create our second website using React JS, which serves as another MicroFrontend application in
our Microservices architecture.

Our goal is to prepare a React JS application for deployment on Kubernetes. The UI applications developed in this
lab will be utilized in subsequent labs, including the creation of DevOps pipelines and the deployment to Azure
Kubernetes Services.

Let's look into the lab and begin our journey by creating a React JS application as part of the Microservices
Architecture!

Technical Scenario

As a Frontend (FE) developer, you have been assigned the task of developing a website or UI application using
React JS technology. This website will be one of the small Website (UI) components in our MicroFrontend
applications list.

This lab aims to provide you with hands-on experience in creating a React JS application as part of the
Microservices Architecture. We will begin by utilizing an existing Git repository and proceed to create a new React JS
project within it. Finally, we will containerize this website and push it to the Azure Container Registry (ACR) in
preparation for deployment to Azure Kubernetes Services (AKS).

Objective

In this exercise, our objective is to accomplish and learn the following tasks:

Step 1: Install Node.js and NPM

Step-2: Create new React JS application

Step-3: Add Dockerfiles to the React JS project

Step-4: Docker Build locally

Step-5: Docker Run locally

Step-6: Publish docker container to ACR

Prerequisites

Git Repository

Clone existing Microservices repo

Download and install software for React Development

Docker desktop

VS Code with Docker extension

Azure Container Registry (ACR)

Architecture Diagram

The following diagram shows the high level steps to create the website using React JS.

Step-1: Install Node.js and NPM

Before you can create a React app, you'll need to install Node.js and NPM (Node Package Manager) on your system.
You can download the latest version of Node.js and NPM from the official website: https://nodejs.org/en/download/

Manual install

Click on the Installer as per your Operating system preference to install Node.js & NPM both in your system.

install using commands

Windows OS

Install Node.js & NPM using Chocolatey (choco) for windows users, assuming you already installed choco in your
system, run these commands as administrator from command prompt

This command will download and install the latest version of Node.js.

choco install nodejs

install a specific version

choco install nodejs --version=14.17.6

http://127.0.0.1:8000/micros-k8s/microservices/images/image-11.png
http://127.0.0.1:8000/micros-k8s/microservices/images/image-11.png
https://nodejs.org/en/download/

Mac OS

Install Node.js & NPM using Homebrew for Mac users, assuming you already installed Homebrew in your system:

verify that Node.js is installed correctly

output

verify that npm version is installed correctly

output

Step-2: Create a new React JS application

install latest version

brew install node

install a specific version

brew install node@14

node --version

npm version

v19.8.1

npm version

{

npm: '9.5.1',

node: '19.8.1',

acorn: '8.8.2',

ada: '1.0.4',

ares: '1.19.0',

brotli: '1.0.9',

cldr: '42.0',

icu: '72.1',

llhttp: '8.1.0',

modules: '111',

napi: '8',

nghttp2: '1.52.0',

nghttp3: '0.7.0',

ngtcp2: '0.8.1',

openssl: '3.0.8+quic',

simdutf: '3.2.2',

tz: '2022g',

undici: '5.21.0',

unicode: '15.0',

uv: '1.44.2',

uvwasi: '0.0.16',

v8: '10.8.168.25-node.12',

zlib: '1.2.13'

}

Once you have Node.js installed, you can create a new React JS application using the create-react-app command.
Open a terminal window and run the following command:

Wait for few mins for completing the installation.

This command will create a new React JS application with all the necessary files and directories in a folder named
react-app in your current directory.

output

If you closely look at the output produced by installer, it has some details to get start by React JS application.

Run the Application

npx create-react-app react-app

Need to install the following packages:

create-react-app@5.0.1

Ok to proceed? (y) Y

npm WARN deprecated tar@2.2.2: This version of tar is no longer supported, and will not receive

security updates. Please upgrade asap.

Creating a new React app in C:\Source\Repos\Microservices\react-app.

Installing packages. This might take a couple of minutes.

Installing react, react-dom, and react-scripts with cra-template...

added 1419 packages in 2m

.

.

.

http://127.0.0.1:8000/micros-k8s/microservices/images/image-20.jpg
http://127.0.0.1:8000/micros-k8s/microservices/images/image-20.jpg

output

Step-3: Add Dockerfiles to the MVC project

Create a Dockerfile in the root directory of your project and copy following code. Dockerfile will provide instructions
for building a container image of our React JS Website.

cd react-app

npm start

Compiled successfully!

You can now view react-app in the browser.

Local: http://localhost:3000

On Your Network: http://172.21.128.1:3000

Note that the development build is not optimized.

To create a production build, use npm run build.

webpack compiled successfully

http://127.0.0.1:8000/micros-k8s/microservices/images/image-21.jpg
http://127.0.0.1:8000/micros-k8s/microservices/images/image-21.jpg

Read inline comments of the Dockerfile for understanding the Dockerfile instructions

Step-4: Docker Build locally

We will build the Docker container locally using the Dockerfiles and ensure that the containerized application
functions as expected.

The docker build command is used to build Docker images from a Dockerfile.

output

When you run the docker build command, Docker looks for a Dockerfile in the specified directory (PATH) and
reads the instructions in the file to build a new image.

pull official base image

FROM node:13.12.0-alpine

set working directory

WORKDIR /app

add `/app/node_modules/.bin` to $PATH

ENV PATH /app/node_modules/.bin:$PATH

install app dependencies

COPY package.json ./

COPY package-lock.json ./

RUN npm install --silent

RUN npm install react-scripts@3.4.1 -g --silent

add app

COPY . ./

start app

CMD ["npm", "start"]

Note

docker build -t sample/react-app:20230322.1 .

=> [6/7] RUN npm install react-scripts@3.4.1 -g

=> [7/7] COPY .

=> exporting to image

=> => exporting layers

=> => writing image sha256:552d7e73a9fbecf6f51397becc9af1b69df05429b3731513f53f6e89dd8a7cab

=> => naming to docker.io/sample/react-app:20230322.

Use 'docker scan' to run Snyk tests against images to find vulnerabilities and learn how to fix

them

The Dockerfile contains a series of instructions that define how to build the image, such as copying files, running
commands, and setting environment variables.

Step-5: Docker Run locally

Run the Docker container locally to verify that the application functions correctly within a containerized environment.
This step ensures that the containerized application operates as expected on your local machine.

Run the docker run command to start a container based on the image:

output

if you open the docker desktop you will notice the new image & container started running.

Image

Container

docker run --rm -p 3000:3000 sample/react-app:20230322.1

Compiled successfully!

You can now view react-app in the browser.

Local: http://localhost:3000

On Your Network: http://172.17.0.2:3000

Note that the development build is not optimized.

To create a production build, use npm run build.

webpack compiled successfully

Compiling...

Compiled successfully!

webpack compiled successfully

http://127.0.0.1:8000/micros-k8s/microservices/images/image-22.jpg
http://127.0.0.1:8000/micros-k8s/microservices/images/image-22.jpg

This will start the ReactJS application in the Docker container and map the container's port 3000 to your local
machine's port 3000.

Your ReactJS application is now running inside a Docker container.

Open your favorite browser and enter the following URL to see the running application in port 3000

http://localhost:3000/

You now have a basic React JS application up and running. From here, you can continue building out your application
by adding more and more code as per your requirements.

Step-6: Push docker container to ACR

http://127.0.0.1:8000/micros-k8s/microservices/images/image-23.jpg
http://127.0.0.1:8000/micros-k8s/microservices/images/image-23.jpg
http://localhost:3000/
http://127.0.0.1:8000/micros-k8s/microservices/images/image-21.jpg
http://127.0.0.1:8000/micros-k8s/microservices/images/image-21.jpg

Now we've Docker Containers ready locally for push to Container Registry so that we can use them in future
deployment to Azure Kubernetes Services (AKS). This step prepares the container for deployment to the cloud
environment.

To publish a Docker container to Azure Container Registry (ACR), you will need to have the following:

1. Create an Azure Container Registry. If you don't have one, you can create one by following the instructions in the
Azure Portal or using Azure CLI.

2. Log in to your Azure Container Registry using the Docker command-line interface. You can do this by running the
following command:

list all the Docker images that are available on the local system

output

3. Tag your Docker container image with the full name of your Azure Container Registry, including the repository
name and the version tag. You can do this by running the following command:

4. Push your Docker container image to your Azure Container Registry using the Docker command-line interface.
You can do this by running the following command:

azure Login

az login

set the azure subscription

az account set -s "anji.keesari"

Log in to the container registry

az acr login --name acr1dev

Login Succeeded

To get the login server address for verification

az acr list --resource-group rg-acr-dev --query "[].{acrLoginServer:loginServer}" --output

table

output should look similar to this.

AcrLoginServer

acr1dev.azurecr.io

docker images

REPOSITORY TAG

IMAGE ID CREATED SIZE

sample/aspnet-app 20230312.1

587f347206bc 8 minutes ago 216MB

.

.

.

docker tag sample/react-app:20230322.1 acr1dev.azurecr.io/sample/react-app:20230322.1

Output

5. Wait for the push to complete. Depending on the size of your Docker container image and the speed of your
internet connection, this may take a few minutes.

6. Verify the newly pushed image to ACR.

Output

7. Show the new tags of a image in the acr

output

You've successfully pushed your Docker container image to Azure Container Registry. You can now use the Azure
Portal or Azure CLI to manage your container images and deploy them to Azure services like Azure Kubernetes
Service (AKS).

docker push acr1dev.azurecr.io/sample/react-app:20230322.1

The push refers to repository [acr1dev.azurecr.io/sample/react-app]

649a035a1734: Pushed

4061bd2dd536: Pushed

c0257b3030b0: Pushed

912a3b0fc587: Pushed

a36186d93e25: Pushed

a3d997b065bc: Pushed

65d358b7de11: Pushed

f97384e8ccbc: Pushed

d56e5e720148: Pushed

beee9f30bc1f: Pushed

20230322.1: digest: sha256:73f0669d18c6cae79beb81edc8c523191710f9ec4781d590884b46326f9ad6f9

size: 2419

az acr repository list --name acr1dev --output table

Result

mcr.microsoft.com/dotnet/aspnet

mcr.microsoft.com/dotnet/sdk

sample/aspnet-api

sample/aspnet-app

sample/react-app

az acr repository show-tags --name acr1dev --repository sample/react-app --output table

Result

20230322.1

Setting up SQL Server database in a Docker Container

Introduction

SQL Server is a relational database management system (RDBMS) developed by Microsoft. SQL Server is widely
used by organizations of all sizes for managing their data and building mission-critical applications.

In this lab, I will guide you through the process of creating Docker container for SQL Server database and run SQL
Server database in the docker, and finally accessing the SQL Server database using SQL Server Management Studio
(SSMS) and Azure Data Studio tools.

Benefits of SQL Server Container

Creating a Docker container for SQL Server database offers several benefits:

Portability: Docker containers encapsulate the SQL Server database and its dependencies, making it easy to
deploy and run the database on any system that supports Docker, regardless of the underlying operating system
or hardware. This portability ensures consistency in development, testing, and production environments.

Isolation: Docker containers provide a lightweight and isolated environment for running applications, including
databases like SQL Server. Each container operates independently of other containers and the host system,
reducing potential conflicts and dependencies.

Consistency: Docker containers use a declarative approach to define the environment and dependencies required
for running the SQL Server database. This ensures consistency across different environments, such as
development, testing, and production, reducing the risk of configuration errors and deployment issues.

Scalability: Docker containers allow for easy scaling of SQL Server databases by spinning up multiple instances
of the containerized database as needed. Container orchestration tools like Kubernetes can automate the
deployment and management of containerized databases to meet varying workload demands.

Ease of Deployment: Docker containers simplify the deployment process for SQL Server databases by packaging
the database and its dependencies into a single unit that can be easily distributed and deployed across different
environments. This streamlines the deployment workflow and reduces the time and effort required for
provisioning and configuring databases.

Objective

The objective is to establish a local development environment for the SQL Server database. To accomplish this, you
will create a Dockerfile file, run them locally. All of these tasks we are doing here will be useful in later chapters when
deploying to the Azure Kubernetes Service (AKS).

In this exercise, our objective is to accomplish and learn the following tasks:

Step-1: Setup Git Repository for SQL Server database.

Step-2: Create Folder Structure for SQL Server database.

Step-3: Add Dockerfiles to the Database Project

Step-3.1: Docker Build Locally

Step-3.2: Docker Run Locally

Step-4: Test the SQL Server database connection using SSMS

Step-5: Test the SQL Server database connection using Azure Data Studio

Step-6: Push Docker Container to ACR

By the end of this lab, you will have a SQL Server database running in a Docker container, managed through Azure
DevOps, and ready for use in your development and production environments.

Prerequisites

Before starting this lab, ensure you have the following prerequisites in place:

Docker Desktop: - Docker Downloads.

Docker compose installed

SQL Server Management Studio installed - this will allow you to manage the SQL Server databases

Azure Data Studio installed - this will allow you to connect to SQL server databases

Basic understanding of Docker and SQL Server.

Access to an Azure Container Registry (ACR).

Verify the docker installation by running following commands:

Verify the docker compose by running following commands:

Architecture Diagram

The following diagram shows the high level steps to create docker container for SQL Server database.

docker version

or

docker --version

or

docker -v

docker-compose version

https://docs.docker.com/get-docker/

Step-1: Setup Git Repository for SQL Server database

Setting up a Git repository for your SQL Server database project allows you to manage your code effectively, work in
teams, and track the changes of your database codebase.

Create a new project in Azure DevOps for your database-related work.

Create a repository within the project to store your database scripts and Dockerfiles.

For example to clone an existing repository, run the following command:

Step-2: Create Folder Structure for SQL Server database

In this step, we'll create a dedicated project or folder for our SQL Server database

Create a new database project:

Inside our Git repository, create a new directory or folder specifically for your SQL Server database. This folder will
contain all the necessary files for SQL Server database, including databaseschema scripts, sample data scripts,
docker compose & Dockerfile and other sql files.

Here's a suggestion for a folder structure for a SQL Server database project:

git clone https://keesari.visualstudio.com/Microservices/_git/microservices

http://127.0.0.1:8000/micros-k8s/microservices/images/sqlserver/image-8.png
http://127.0.0.1:8000/micros-k8s/microservices/images/sqlserver/image-8.png

Explanation:

sql/ : This folder contains all SQL-related files for your project.

scripts/ : Contains scripts for creating database objects like tables, views, functions, and stored procedures.

schema/ : Contains subfolders for different types of database objects.

tables/ , views/ , functions/ , procedures/ : Each of these folders contains SQL scripts for the respective
database objects.

data/ : Contains data scripts such as seed data.

migrations/ : Contains SQL migration scripts for managing database schema changes over time. Each migration
version should have an up.sql script for applying the migration and a down.sql script for reverting it.

Dockerfile : The Dockerfile for building a Docker image for your SQL Server database.

README.md : Documentation for your project.

You can adjust this structure based on the specific needs of your project. For instance, if you have additional folders
or files, you can add them accordingly.

your-project-name/

│
├── sql/

│ ├── scripts/

│ │ ├── schema/

│ │ │ ├── tables/

│ │ │ │ ├── table1.sql

│ │ │ │ ├── table2.sql

│ │ │ │ └── ...

│ │ │ ├── views/

│ │ │ │ ├── view1.sql

│ │ │ │ ├── view2.sql

│ │ │ │ └── ...

│ │ │ ├── functions/

│ │ │ │ ├── function1.sql

│ │ │ │ ├── function2.sql

│ │ │ │ └── ...

│ │ │ └── procedures/

│ │ │ ├── procedure1.sql

│ │ │ ├── procedure2.sql

│ │ │ └── ...

│ │ └── data/

│ │ ├── seed_data.sql

│ │ └── ...

│ └── migrations/

│ ├── version1/

│ │ ├── up.sql

│ │ └── down.sql

│ ├── version2/

│ │ ├── up.sql

│ │ └── down.sql

│ └── ...

│
├── Dockerfile

└── README.md

Step-3: Add Dockerfiles to the Database Project

To build a Docker image for SQL Server, create a Dockerfile in your project's root directory:

In this Dockerfile:

We start with the official SQL Server 2019 image provided by Microsoft.

Set environment variables ACCEPT_EULA to 'Y' and SA_PASSWORD to the desired strong password for the 'sa'
account.

Create a directory inside the container to copy your SQL scripts (/src in this case).

Copy your SQL scripts into the container (assuming you have them in the same directory as your Dockerfile).

Set permissions for the SQL scripts (if needed).

Finally, specify the command to start SQL Server when the container starts.

You would replace "./scripts.sql" with the path to your actual SQL script file.

Use the official SQL Server 2019 image from Microsoft

FROM mcr.microsoft.com/mssql/server:2019-latest

Set the environment variables for SQL Server

ENV ACCEPT_EULA=Y

ENV SA_PASSWORD=Strong@Passw0rd

ENV MSSQL_PID=Developer

ENV MSSQL_TCP_PORT=1433

Create a directory inside the container to copy your SQL scripts

WORKDIR /src

Copy your SQL scripts into the container [optional]

COPY scripts.sql ./scripts.sql

Set permissions for the SQL scripts

RUN chmod +x ./scripts.sql

RUN SQL SERVER and Access SQL CLI on localhost with given credentials

Then run SQL Script - scripts.sql

RUN (/opt/mssql/bin/sqlservr --accept-eula &) | grep -q "Service Broker manager has started" &&

/opt/mssql-tools/bin/sqlcmd -S127.0.0.1 -Usa -PStrong@Passw0rd -i scripts.sql

http://127.0.0.1:8000/micros-k8s/microservices/images/sqlserver/image-7.png
http://127.0.0.1:8000/micros-k8s/microservices/images/sqlserver/image-7.png

Step-3.1: Docker Build Locally

To build the Docker image, navigate to the directory containing the Dockerfile and your SQL script, then run:

Docker desktop > Image

Step-3.2: Docker Run Locally

To run your SQL Server container locally for testing and development, use the following command:

This command creates a container named my-sqlserver-container and maps port 5432 from the container to the
host.

Docker desktop > Container

USE master;

GO

-- Create SampleDB

CREATE DATABASE SampleDB;

GO

USE SampleDB;

GO

-- Create Users table

CREATE TABLE Users (

UserID INT PRIMARY KEY,

Username NVARCHAR(50),

Email NVARCHAR(100)

);

GO

-- Insert some sample data into Users table

INSERT INTO Users (UserID, Username, Email) VALUES (1, 'user1', 'user1@example.com');

INSERT INTO Users (UserID, Username, Email) VALUES (2, 'user2', 'user2@example.com');

INSERT INTO Users (UserID, Username, Email) VALUES (3, 'user3', 'user3@example.com');

GO

docker build -t my-sqlserver-image .

docker run -d --name my-sqlserver-container -p 5432:5432 my-sqlserver-image

http://127.0.0.1:8000/micros-k8s/microservices/images/sqlserver/image-1.png
http://127.0.0.1:8000/micros-k8s/microservices/images/sqlserver/image-1.png

Step-4: Test the SQL Server database connection using SSMS

Testing the SQL Server database connection using SQL Server Management Studio (SSMS) ensures that the
database server is accessible and that users can connect to it successfully.

Launch SQL Server Management Studio (SSMS) and provide the necessary credentials to connect to the SQL Server
instance.

SSMS > Login Page

SSMS > After Login

http://127.0.0.1:8000/micros-k8s/microservices/images/sqlserver/image-2.png
http://127.0.0.1:8000/micros-k8s/microservices/images/sqlserver/image-2.png
http://127.0.0.1:8000/micros-k8s/microservices/images/sqlserver/image-5.png
http://127.0.0.1:8000/micros-k8s/microservices/images/sqlserver/image-5.png

Step-5: Test the SQL server database connection using Azure Data Studio

Azure Data Studio is a cross-platform database tool that offers features similar to SQL Server Management Studio
(SSMS) but with additional support for Azure services and extensions.

Launch Azure Data Studio and provide the necessary credentials to connect to the SQL Server instance.

SSMS > Login Page

http://127.0.0.1:8000/micros-k8s/microservices/images/sqlserver/image-6.png
http://127.0.0.1:8000/micros-k8s/microservices/images/sqlserver/image-6.png

SSMS > After Login

http://127.0.0.1:8000/micros-k8s/microservices/images/sqlserver/image-3.png
http://127.0.0.1:8000/micros-k8s/microservices/images/sqlserver/image-3.png

Step-6: Push Docker Container to ACR

Push your SQL Server container image to Azure Container Registry (ACR) for use in AKS. Follow these steps:

Log in to your Azure account using the Azure CLI:

Authenticate to your ACR:

Replace myacr with your ACR name.

Tag your local Docker image with the ACR login server:

Push the Docker image to ACR:

az login

az acr login --name myacr

docker tag my-sqlserver-image myacr.azurecr.io/my-sqlserver-image:v1

http://127.0.0.1:8000/micros-k8s/microservices/images/sqlserver/image-4.png
http://127.0.0.1:8000/micros-k8s/microservices/images/sqlserver/image-4.png

Replace myacr and v1 with your ACR name and desired image version.

Now, your SQL Server container image is stored in Azure Container Registry and can be easily pulled and deployed
from AKS to Azure Database for SQL Server - Flexible Server.

Conclusion

You have successfully created a Docker container for SQL Server database, container created as part of this task will
be used in the future labs in AKS.

References

Docker Hub

Docker Hub - Microsoft SQL Server image

Microsoft MSDN- Install SQL Server

Microsoft Github- mssql-docker

docker push myacr.azurecr.io/my-sqlserver-image:v1

https://hub.docker.com/search?q=
https://hub.docker.com/_/microsoft-mssql-server
https://hub.docker.com/_/microsoft-mssql-server
https://github.com/microsoft/mssql-docker/blob/master/linux/mssql-server-linux/Dockerfile

Setting up PostgreSQL database in a Docker Container

Introduction

PostgreSQL, also known as Postgres is a powerful, open-source relational database management system
(RDBMS). PostgreSQL has gained popularity due to its advanced features and capabilities. PostgreSQL is a reliable
choice for a wide range of applications, from small projects to large-scale enterprise systems. Its open-source
nature, strong adherence to standards, and extensive feature set making it a popular database solution in the
application development.

In this lab, I will guide you through the process of creating Docker container for PostgreSQL database and run
PostgreSQL database in the docker, and finally accessing the PostgreSQL database from pgadmin and psql
command line tools.

Technical Scenario

As an Application Architect , you are responsible for setting up a microservices architecture and databases for
your product development. Your task is to streamline the process of creating development environments for your
project and developers. As part of this process, you will use Azure DevOps to manage our PostgreSQL project. We
will create a separate database project, add Dockerfiles to the PostgreSQL database project, and push the container
image to Azure Container Registry (ACR) so that developers can focus on building and testing applications without
worrying about the complexities of setting up and managing PostgreSQL databases on their local machines. This
approach improves productivity, ensures consistency, and enhances the overall development workflow.

Objective

The objective is to establish a local development environment for the PostgreSQL database. To accomplish this, you
will create a docker compose file, run them locally. All of these tasks we are doing here will be useful in later
chapters when deploying to the Azure Kubernetes Service (AKS).

In this exercise, our objective is to accomplish and learn the following tasks:

Step-1: Setup Git Repository for PostgreSQL database.

Step-2: Create Folder Structure for PostgreSQL database.

Step-3: Add Dockerfiles to the Database Project

Step-3.1: Docker Build Locally

Step-3.2: Docker Run Locally

Step-4: Create Docker Compose file

Step-4.1: Build PostgreSQL database locally.

Step-4.2: Run PostgreSQL database Container locally.

Step-5: Test the PostgreSQL database connection from psql tool

Step-6: Test the PostgreSQL database from pgadmin4 tool

Step-7: Push Docker Container to ACR

By the end of this lab, you will have a PostgreSQL database running in a Docker container, managed through Azure
DevOps, and ready for use in your development and production environments.

Prerequisites

Before starting this lab, ensure you have the following prerequisites in place:

Docker Desktop: - Docker Downloads.

Docker compose installed

Git Client tool: - Git Downloads.

PostgreSQL installed - this will allow you to run psql command line tool

Basic understanding of Docker and PostgreSQL.

Access to an Azure Container Registry (ACR).

Verify the docker installation by running following commands:

Verify the docker compose by running following commands:

Architecture Diagram

The following diagram shows the high level steps to create docker container for PostgreSQL database .

docker version

or

docker --version

or

docker -v

docker-compose version

https://docs.docker.com/get-docker/
https://git-scm.com/downloads

Step-1: Setup Git Repository for PostgreSQL database

Setting up a Git repository for your PostgreSQL database project allows you to manage your code effectively, work in
teams, and track the changes of your database codebase.

Create a new project in Azure DevOps for your database-related work.

Create a repository within the project to store your database scripts and Dockerfiles.

For example to clone an existing repository, run the following command:

Step-2: Create Folder Structure for PostgreSQL database

In this step, we'll create a dedicated project or folder for our PostgreSQL database

Create a new project:

Inside our Git repository, create a new directory or folder specifically for your PostgreSQL database. This folder will
contain all the necessary files for PostgreSQL database, including database scripts, docker compose & Dockerfile
and other psql files.

Here's a suggested folder structure for a PostgreSQL database project:

git clone https://keesari.visualstudio.com/Microservices/_git/microservices

http://127.0.0.1:8000/micros-k8s/microservices/images/postgresql/postgresql-5.png
http://127.0.0.1:8000/micros-k8s/microservices/images/postgresql/postgresql-5.png

Explanation:

sql/ : This folder contains all SQL-related files for your project.

scripts/ : Contains scripts for creating database objects like tables, views, functions, and stored procedures.

schema/ : Contains subfolders for different types of database objects.

tables/ , views/ , functions/ , procedures/ : Each of these folders contains SQL scripts for the respective
database objects.

data/ : Contains data scripts such as seed data.

migrations/ : Contains SQL migration scripts for managing database schema changes over time. Each migration
version should have an up.sql script for applying the migration and a down.sql script for reverting it.

Dockerfile : The Dockerfile for building a Docker image for your PostgreSQL database.

docker-compose.yml : A Docker Compose file that defines the services, networks, and volumes for your
PostgreSQL container.

your-project-name/

│
├── psql/

│ ├── scripts/

│ │ ├── schema/

│ │ │ ├── tables/

│ │ │ │ ├── table1.sql

│ │ │ │ ├── table2.sql

│ │ │ │ └── ...

│ │ │ ├── views/

│ │ │ │ ├── view1.sql

│ │ │ │ ├── view2.sql

│ │ │ │ └── ...

│ │ │ ├── functions/

│ │ │ │ ├── function1.sql

│ │ │ │ ├── function2.sql

│ │ │ │ └── ...

│ │ │ └── procedures/

│ │ │ ├── procedure1.sql

│ │ │ ├── procedure2.sql

│ │ │ └── ...

│ │ └── data/

│ │ ├── seed_data.sql

│ │ └── ...

│ └── migrations/

│ ├── version1/

│ │ ├── up.sql

│ │ └── down.sql

│ ├── version2/

│ │ ├── up.sql

│ │ └── down.sql

│ └── ...

│
├── Dockerfile

├── docker-compose.yml

└── README.md

README.md : Include documentation or instructions for using the repository, such as setup steps, environment
variables, or specific details about the database scripts.

Feel free to customize this structure according to your project's needs. You can add additional folders or files as
required.

Dockerfile vs Docker Compose

A Dockerfile contains a set of instructions and commands used by Docker to automatically build a new container
image.

The docker-compose.yaml file is a configuration file used by Docker Compose, a tool for defining and running multi-
container Docker applications. With a single command, Docker Compose uses the docker-compose.yaml file to
create and start all the services defined in the file.

In this lab I'll show you both approaches for creating PostgreSQL database.

Step-3: Add Dockerfiles to the Database Project

To build a Docker image for PostgreSQL, create a Dockerfile in your project's root directory:

In this Dockerfile:

We use the official PostgreSQL image as our base image.

Set environment variables to configure the PostgreSQL instance.

Step-3.1: Docker Build Locally

Navigate to your project's root directory and build the Docker image locally using the following command:

Replace my-postgresql-image with a meaningful name for your image.

Docker desktop > Image

Use the official PostgreSQL image as the base image

FROM postgres:latest

Set environment variables for PostgreSQL

ENV POSTGRES_USER=myuser

ENV POSTGRES_PASSWORD=mypassword

ENV POSTGRES_DB=mydatabase

docker build -t my-postgresql-image .

Step-3.2: Docker Run Locally

To run your PostgreSQL container locally for testing and development, use the following command:

This command creates a container named my-postgresql-container and maps port 5432 from the container to
the host.

Docker desktop > Container

Step-4: Create Docker Compose file

To setup the PostgreSQL database with docker compose you need to first create a docker compose file that defines
the PostgreSQL database service and any necessary dependencies.

Create a file named docker-compose.yml in your project directory. This file will define the services and
configurations for your PostgreSQL database setup.

In the docker-compose.yml file, define the PostgreSQL database service. Use the official PostgreSQL database
Docker image and specify any necessary configurations. Here's an example of a PostgreSQL database service
definition:

docker run -d --name my-postgresql-container -p 5432:5432 my-postgresql-image

docker-compose.yml

http://127.0.0.1:8000/micros-k8s/microservices/images/postgresql/postgresql-3.png
http://127.0.0.1:8000/micros-k8s/microservices/images/postgresql/postgresql-3.png
http://127.0.0.1:8000/micros-k8s/microservices/images/postgresql/postgresql-4.png
http://127.0.0.1:8000/micros-k8s/microservices/images/postgresql/postgresql-4.png

Uses the postgres:16 Docker image.

Maps port 5432 on your host to port 5432 in the PostgreSQL database container.

Sets up an initial user and password for PostgreSQL database.

Step-4.1: Build PostgreSQL database locally

The docker-compose up command is used to start and initialize the services defined in a Docker Compose file. We
will build the Docker container locally using the docker compose and ensure that the containerized application
working as expected.

List running Docker containers on your system.

List Docker images that are currently available on your local system.

Database type: PostgreSQL

Database name: postgres

Database username: postgres

Database password: example

ADVANCED OPTIONS; Database host: postgres

version: '3'

services:

 postgres:

 image: postgres:16

 environment:

 POSTGRES_USER : postgres

 POSTGRES_PASSWORD: example

 # ports:

 # - "5432:5432"

 restart: always

docker-compose up

or - -d flag, it tells Docker Compose to run the containers in detached mode

docker-compose up -d

#output

[+] Running 33/2

✔ postgres 14 layers [⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿] 0B/0B Pulled

[+] Running 3/3

✔ Network Postgresql_default Created

✔ Container Postgresql-postgres-1 Started

docker ps

output

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS

NAMES

a433ad35d0a1 postgres:16 "docker-entrypoint.s…" 20 seconds ago Up 19 seconds

0.0.0.0:5432->5432/tcp postgresql-postgres-1

Step-4.2: Run PostgreSQL database Container locally

Run the Docker container locally to verify that the PostgreSQL database working correctly within a containerized
environment. This step ensures that the containerized PostgreSQL database works as expected on your local
machine.

List the running Docker containers on your system

List the Docker networks that are available on your local system

if you open the docker desktop you will notice the new image & container started running.

Ensure that you test the PostgreSQL connection using either the pgAdmin tool or the psql command-line tool.

Step-5: Test the PostgreSQL database connection from psql tool

The psql tool is a command-line interface (CLI) provided by PostgreSQL that allows users to interact with
PostgreSQL databases directly from the terminal or command prompt.

To test a PostgreSQL database connection using the psql command-line tool, follow these steps:

Opening a terminal or command prompt on your computer.

Use the psql utility to connect to your PostgreSQL database.

docker image ls

output

REPOSITORY TAG IMAGE ID CREATED SIZE

postgres 16 488c2842403b 4 weeks ago 448MB

docker container ls

output

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS

NAMES

a433ad35d0a1 postgres:16 "docker-entrypoint.s…" 42 seconds ago Up 41 seconds

0.0.0.0:5432->5432/tcp postgresql-postgres-1

docker network ls

output

NETWORK ID NAME DRIVER SCOPE

a63fce88f432 bridge bridge local

3a43b39f60b0 host host local

21fbef3d5c78 none null local

Note

Replace the placeholders with your specific information:

<hostname> : The hostname of the PostgreSQL server.

<username> : Your PostgreSQL username.

<database_name> : The name of the PostgreSQL database you want to connect to.

For example, to connect to a PostgreSQL database running on the local machine with the username "myuser" and
the database "mydatabase," you would use the following command:

If the PostgreSQL server is running on the default port (5432), you don't need to specify the port. However, if it's
running on a different port, you can use the -p option to specify the port number.

Provide Password(if required):

If your PostgreSQL database is configured to require a password for the specified username, you will be prompted to
enter the password. Type the password and press Enter.

Successful Connection:

If the connection is successful, you should see the psql command prompt, which indicates that you are connected
to the PostgreSQL database. It will look something like this:

You are now in an interactive session with the PostgreSQL database, and you can run SQL commands and queries.

Test SQL Commands:

To further test the database connection, you can execute SQL commands to retrieve or manipulate data. For
example, you can run a simple SQL query like:

This query will return the PostgreSQL version, confirming that you can interact with the database.

Exit psql :

To exit the psql session and return to your command prompt, you can type:

psql -h <hostname> -U <username> -d <database_name>

psql -h localhost -U myuser -d mydatabase

psql (12.7)

Type "help" for help.

mydatabase=#

SELECT version();

\q

or press Ctrl + D (on Unix-based systems) or Ctrl + Z (on Windows).

By following these steps, you can connect to a PostgreSQL database using the psql tool and start interacting with
the database using SQL commands directly from the command line.

Create a Database

Creating a database is really simple. Execute the command below, and the database should be created.

Step-6: Test the PostgreSQL database from pgadmin4 tool

pgAdmin is a popular open-source graphical user interface (GUI) administration tool for PostgreSQL. It provides a
comprehensive set of features for managing PostgreSQL databases, including creating and managing databases,
schemas, tables, indexes, users, and permissions. pgAdmin allows users to interact with PostgreSQL databases
visually, making database administration tasks more intuitive and efficient.

To connect to a PostgreSQL database using the pgAdmin tool, follow these steps:

command

postgres=# CREATE DATABASE [databasename];

example

CREATE DATABASE mydatabase2;

http://127.0.0.1:8000/micros-k8s/microservices/images/postgresql/postgresql-1.png
http://127.0.0.1:8000/micros-k8s/microservices/images/postgresql/postgresql-1.png

Install and Launch pgAdmin 4:

Download and install pgAdmin 4 on your computer. Once installed, launch the pgAdmin 4 application.

Log in to pgAdmin

When you launch pgAdmin for the first time, you'll be prompted to set the master password. Enter the password you
want to use to log in to pgAdmin. You can also choose to save the login information for future use.

Add a Server:

After logging in, you'll see the pgAdmin interface. To connect to a PostgreSQL server, you need to add a server to
pgAdmin. Follow these steps:

In the left sidebar, expand "Servers" to reveal the "PostgreSQL" group.

Right-click on "PostgreSQL" and select "Register > Server..."

Configure Server Connection: you'll need to provide the following information:

Name: Give your server a descriptive name to identify it within pgAdmin.

Host name/address: Specify the hostname or IP address of the PostgreSQL server you want to connect to.

Port: Enter the port number where PostgreSQL is running (default is 5432).

Maintenance database: Specify the name of a database to connect to initially (e.g., "postgres" or "mydatabase").

Username: Enter the PostgreSQL username you want to use for this connection.

Password: Provide the password for the specified username.

for example:

hostname - `localhost`

default database - `postgres`

port - `5432` - default postgresql port #

default user - `user` - this is the owner of default database postgres

password - `example` - this is what we've setup in our container

https://www.pgadmin.org/

Once you've entered the connection details, click the "Save" button to add the server.

Step-7: Push Docker Container to ACR

Push your PostgreSQL container image to Azure Container Registry (ACR) for use in AKS. Follow these steps:

Log in to your Azure account using the Azure CLI:

Authenticate to your ACR:

Replace myacr with your ACR name.

Tag your local Docker image with the ACR login server:

Push the Docker image to ACR:

Replace myacr and v1 with your ACR name and desired image version.

az login

az acr login --name myacr

docker tag my-postgresql-image myacr.azurecr.io/my-postgresql-image:v1

docker push myacr.azurecr.io/my-postgresql-image:v1

http://127.0.0.1:8000/micros-k8s/microservices/images/postgresql/postgresql-2.png
http://127.0.0.1:8000/micros-k8s/microservices/images/postgresql/postgresql-2.png

Now, your PostgreSQL container image is stored in Azure Container Registry and can be easily pulled and deployed
from AKS to Azure Database for PostgreSQL - Flexible Server.

Conclusion

You have successfully created a Docker container for PostgreSQL database, container created as part of this task
will be used in the future labs in AKS.

References

Docker Hub

Docker Hub - PostgreSQL image

https://hub.docker.com/search?q=
https://hub.docker.com/_/postgres

Setting up Keycloak in a Docker Container

Introduction

Keycloak is a popular open-source identity and access management solution that enables you to secure your
applications and services.

If you are new to Keycloak and would like to learn more, you can refer to my article on Getting Started with Keycloak

In this lab, I will guide you through the process of creating Docker container for Keycloak, and finally accessing the
Keycloak application in the web browser.

The objective is to establish a local development environment for the Keycloak application. To accomplish this, you
will create a Dockerfile or Docker Compose files, run them locally, and subsequently push the image to an Azure
Container Registry (ACR). All of these tasks we are doing here will be useful in later chapters when deploying to the
Azure Kubernetes Service (AKS).

Technical Scenario

Title: Securing Microservices with Keycloak in a Microservices Architecture

As an Application Architect , you are responsible for securing a complex microservices architecture using
Keycloak, an open-source identity and access management solution. Your goal is to implement authentication and
authorization mechanisms across the microservices, ensuring that only authorized users and services can access
specific resources.

Here are some Keycloak requirements within microservices architecture:

Microservices architecture: You have a microservices architecture consisting of multiple services, each
responsible for specific functionalities. Services include user-facing web applications, APIs, and backend
services.

Keycloak integration: Integrate Keycloak into the microservices architecture to provide authentication and
authorization capabilities. Keycloak should act as the central identity provider for all microservices.

User management: Implement user management within Keycloak, allowing users to sign up, log in, and manage
their profiles. Define user roles and groups for fine-grained access control.

Secure API endpoints: Protect API endpoints to ensure that only authenticated users or services with the
appropriate permissions can access them. Implement OAuth 2.0 or OpenID Connect for securing APIs.

Single Sign-On (SSO): Keycloak can serve as a versatile solution for enabling SSO between companies by
establishing federated trust relationships between IdPs and SPs. This approach simplifies user access across
organizations, enhances security, and provides a seamless user experience when accessing services and
applications from different companies.

https://anjikeesari.com/articles/keycloak/

JWT Tokens: Utilize JSON Web Tokens (JWT) for secure communication between microservices and Keycloak.
Configure token expiration, signing, and validation.

Objective

In this exercise, our objective is to accomplish and learn the following tasks:

Step-1: Setup repository for Keycloak in Azure devops.

Step-2: Create Keycloak project.

Step-3: Add Dockerfiles to the Keycloak project.

Step-4: Docker build locally.

Step-5: Docker run locally.

Step-6: Publish the Keycloak docker container to container registry.

Prerequisites

Before starting this lab, ensure you have the following prerequisites in place:

Docker and the VS Code Docker extension : - Docker Downloads.

Git Client tool: - Git Downloads.

Azure devops and Git Repository: Initialize a Git repository for your Keycloak application.

Azure Container Registry (ACR)

Docker compose installed

Verify the docker installation by running following commands:

Verify the docker compose by running following commands:

Architecture Diagram

The following diagram shows the high level steps to create docker container for Keycloak application.

docker version

or

docker --version

or

docker -v

docker-compose version

https://docs.docker.com/get-docker/
https://git-scm.com/downloads

Step-1: Setup repository for Keycloak in Azure DevOps

Before you begin with the Keycloak setup, it's necessary to have a version control repository to manage your project.

Create azure devops project

Initialize repository

For this Keycloak application, we can either use an existing git repository created in our first chapter or initiate a new
one.

To clone an existing repository, run the following command:

Step-2: Create Keycloak project

In this step, we'll create a dedicated project for our Keycloak application

Create a new project: Inside our Git repository, create a new directory or folder specifically for your Keycloak project.
This folder will contain all the necessary files for Keycloak, including Dockerfiles and configurations.

git clone https://keesari.visualstudio.com/Microservices/_git/microservices

http://127.0.0.1:8000/micros-k8s/microservices/images/image-13.png
http://127.0.0.1:8000/micros-k8s/microservices/images/image-13.png

Step-3: Keycloak setup with docker compose

Setup Keycloak Service

To setup the Keycloak with docker compose you need to first create a docker compose file that defines the Keycloak
service and any necessary dependencies, such as a PostgreSQL database.

Here's a step-by-step explanation of how to set up Keycloak with docker compose:

Create a file named docker-compose.yml in your project directory. This file will define the services and
configurations for your Keycloak setup.

In the docker-compose.yml file, define the Keycloak service. Use the official Keycloak Docker image and specify any
necessary configurations. Here's an example of a Keycloak service definition:

This definition:

Uses the quay.io/keycloak/keycloak Docker image.

Maps port 8080 on your host to port 8080 in the Keycloak container.

docker-compose.yml

services:

 auth:

 image: quay.io/keycloak/keycloak

 ports:

 - "8080:8080"

 environment:

 KEYCLOAK_ADMIN: admin

 KEYCLOAK_ADMIN_PASSWORD: admin

 command:

 - start-dev

 - --import-realm

 volumes:

 - /home/keycloak/realm.json:/opt/keycloak/data/import/realm.json

http://127.0.0.1:8000/micros-k8s/microservices/images/image-14.png
http://127.0.0.1:8000/micros-k8s/microservices/images/image-14.png

Sets up an initial admin user and password for Keycloak.

docker-compose up

or

docker-compose up -d

#output

[+] Running 1/0

✔ Container keycloak-auth-1 Created

0.0s

Attaching to keycloak-auth-1

.

.

.

Running the server in development mode. DO NOT use this configuration in production.

docker ps

output

CONTAINER ID IMAGE COMMAND CREATED

STATUS PORTS NAMES

d3ee7cef046e quay.io/keycloak/keycloak "/opt/keycloak/bin/k…" About a minute ago

Up About a minute 0.0.0.0:8080->8080/tcp, 8443/tcp keycloak-auth-1

docker image ls

output

REPOSITORY TAG IMAGE ID

CREATED SIZE

quay.io/keycloak/keycloak latest 273d68e6fb8c

6 days ago 459MB

docker container ls

output

CONTAINER ID IMAGE COMMAND CREATED

STATUS PORTS NAMES

d3ee7cef046e quay.io/keycloak/keycloak "/opt/keycloak/bin/k…" 22 minutes ago Up

22 minutes 0.0.0.0:8080->8080/tcp, 8443/tcp keycloak-auth-1

docker network ls

output

NETWORK ID NAME DRIVER SCOPE

e71f9c6bd718 bridge bridge local

d08c17ea4f0e docker-nodejs-sample_default bridge local

cfb02a162739 host host local

c8fb8d726406 keycloak_default bridge local

8bba86e6ad07 none null local

Access Keycloak: Once the Keycloak service is up and running, you can access the Keycloak admin console by
opening a web browser and navigating to http://localhost:8080. You can log in using the admin user and password
you defined in the Keycloak service configuration.

Keycloal admin console

Keycloak Login page

http://127.0.0.1:8000/micros-k8s/microservices/images/image-15.png
http://127.0.0.1:8000/micros-k8s/microservices/images/image-15.png

Keycloak master relm

Setup Keycloak Service with PostgreSQL database

If you want to use a PostgreSQL database as Keycloak's backend, define a PostgreSQL service in the same docker-
compose.yml file.

Here's a complete docker-compose.yml file that sets up Keycloak with a PostgreSQL database:

docker-compose.yml

http://127.0.0.1:8000/micros-k8s/microservices/images/image-16.png
http://127.0.0.1:8000/micros-k8s/microservices/images/image-16.png
http://127.0.0.1:8000/micros-k8s/microservices/images/image-17.png
http://127.0.0.1:8000/micros-k8s/microservices/images/image-17.png

In this docker-compose.yml file:

The keycloak service uses the official Keycloak Docker image, maps port 8080 on your host to port 8080 in the
Keycloak container, and sets up an initial admin user and password.

The postgres service uses the official PostgreSQL Docker image, specifies the database name, username, and
password for PostgreSQL, and maps port 5432 on your host to port 5432 in the PostgreSQL container.

depends_on ensures that the keycloak service starts only after the postgres service is up and running, as
Keycloak relies on the PostgreSQL database.

Both services are connected to a custom network called keycloak_network for communication between
containers.

version: '3'

services:

 keycloak:

 image: quay.io/keycloak/keycloak

 container_name: keycloak

 ports:

 - "8080:8080"

 environment:

 - KEYCLOAK_ADMIN=admin

 - KEYCLOAK_ADMIN_PASSWORD=admin

 command:

 - start-dev

 - --import-realm

 volumes:

 - /home/keycloak/realm.json:/opt/keycloak/data/import/realm.json

 depends_on:

 - postgres

 networks:

 - keycloak_network

 postgres:

 image: postgres:latest

 container_name: postgres

 ports:

 - "5432:5432"

 environment:

 - POSTGRES_DB=keycloak

 - POSTGRES_USER=keycloak

 - POSTGRES_PASSWORD=keycloak

 networks:

 - keycloak_network

networks:

 keycloak_network:

 driver: bridge

Once both services are up and running, you can access the Keycloak admin console by opening a web browser and
navigating to http://localhost:8080/auth . Log in using the admin user and password you specified in the
Keycloak service configuration.

Step-4: Keycloak setup with Dockerfile

Step-4.1: Create Dockerfile

Let's create a Dockerfile in the root directory of our project and include the following code. We are going to use this
Dockerfile to containerize our Keycloak application as per our need.

Dockerfile

FROM quay.io/keycloak/keycloak:latest as builder

Enable health and metrics support

ENV KC_HEALTH_ENABLED=true

ENV KC_METRICS_ENABLED=true

Configure a database vendor

ENV KC_DB=postgres

WORKDIR /opt/keycloak

for demonstration purposes only, please make sure to use proper certificates in production

instead

RUN keytool -genkeypair -storepass password -storetype PKCS12 -keyalg RSA -keysize 2048 -dname

"CN=server" -alias server -ext "SAN:c=DNS:localhost,IP:127.0.0.1" -keystore conf/server.keystore

RUN /opt/keycloak/bin/kc.sh build

FROM quay.io/keycloak/keycloak:latest

COPY --from=builder /opt/keycloak/ /opt/keycloak/

change these values to point to a running postgres instance

ENV KC_DB=postgres

ENV KC_DB_URL=<DBURL>

ENV KC_DB_USERNAME=<DBUSERNAME>

ENV KC_DB_PASSWORD=<DBPASSWORD>

ENV KC_HOSTNAME=localhost

ENTRYPOINT ["/opt/keycloak/bin/kc.sh"]

http://127.0.0.1:8000/micros-k8s/microservices/images/image-18.png
http://127.0.0.1:8000/micros-k8s/microservices/images/image-18.png

Step-4.2: Docker build locally

We will build the Docker container locally using the Dockerfiles and ensure that the containerized application working
as expected.

The docker build command is used to build Docker images from a Dockerfile.

output

When you run the docker build command, Docker looks for a Dockerfile in the specified directory and reads the
instructions in the file to build a new image.

The Dockerfile contains a series of instructions that define how to build the image, such as copying files, running
commands, and setting environment variables.

Step-4.3: Docker run locally

Run the Docker container locally to verify that the keycloak application working correctly within a containerized
environment. This step ensures that the containerized keycloak application works as expected on your local
machine.

Run the docker run command to start a container based on the image:

output

if you open the docker desktop you will notice the new image & container started running.

Step-5: Publish the Keycloak docker container to container registry

Now that we have Keycloak Docker container ready locally, it's time to push them to the Container Registry for future
deployment on Azure Kubernetes Services (AKS). This step is important for preparing the container for deployment
in a cloud environment.

To publish a Keycloak Docker container to Azure Container Registry (ACR), you will need to have the following:

Create an Azure Container Registry. If you don't have one, you can create one by following the instructions in the
Azure Portal or using Azure CLI.

docker build -t sample/keycloak-app:20240101.1 .

Docker build output goes here

docker run --rm -p 8080:8080 sample/keycloak-app:20240101.1 .

Docker run output goes here

Log in to your Azure Container Registry using the Docker command-line interface. You can do this by running the
following command:

list all the Docker images that are available on the local system

Tag your Docker container image with the full name of your Azure Container Registry, including the repository name
and the version tag. You can do this by running the following command:

Push your Docker container image to your Azure Container Registry using the Docker command-line interface. You
can do this by running the following command:

azure Login

az login

set the azure subscription

az account set -s "anji.keesari"

Log in to the container registry

az acr login --name acr1dev

Login Succeeded

To get the login server address for verification

az acr list --resource-group rg-acr-dev --query "[].{acrLoginServer:loginServer}" --output table

output should look similar to this.

AcrLoginServer

acr1dev.azurecr.io

docker images

output

REPOSITORY TAG

IMAGE ID CREATED SIZE

sample/keycloak-app 20230312.1

587f347206bc 8 minutes ago 216MB

.

.

.

docker tag sample/keycloak-app:20240101.1 acr1dev.azurecr.io/sample/keycloak-app:20240101.1

Wait for the push to complete. Depending on the size of your Docker container image and the speed of your internet
connection, this may take a few minutes.

Verify the newly pushed image to ACR.

Show the new tags of a image in the acr

You've successfully pushed your Docker container image to Azure Container Registry. You can now use the Azure
Portal or Azure CLI to manage your container images and deploy them to Azure services like Azure Kubernetes
Service (AKS).

Conclusion

You have successfully created a Docker container for keycloak application, container created as part of this task will
be used in the future labs in AKS.

References

docker push acr1dev.azurecr.io/sample/keycloak-app:20240101.1

#Output

The push refers to repository [acr1dev.azurecr.io/sample/keycloak-app]

649a035a1734: Pushed

4061bd2dd536: Pushed

c0257b3030b0: Pushed

912a3b0fc587: Pushed

a36186d93e25: Pushed

a3d997b065bc: Pushed

65d358b7de11: Pushed

f97384e8ccbc: Pushed

d56e5e720148: Pushed

beee9f30bc1f: Pushed

20240101.1: digest: sha256:73f0669d18c6cae79beb81edc8c523191710f9ec4781d590884b46326f9ad6f9 size:

2419

az acr repository list --name acr1dev --output table

Output

Result

mcr.microsoft.com/dotnet/aspnet

mcr.microsoft.com/dotnet/sdk

sample/aspnet-api

sample/aspnet-app

sample/node-api

sample/postgresql-db

sample/keycloak-app

az acr repository show-tags --name acr1dev --repository sample/keycloak-app --output table

keycloak Docker image

Keycloak Official Documentation

GitHub repository

Stack Overflow

-

https://hub.docker.com/r/keycloak/keycloak
https://www.keycloak.org/documentation
https://github.com/keycloak/keycloak
https://stackoverflow.com/questions/tagged/keycloak

Setting up Drupal in a Docker Container

Introduction

Drupal is a free open-source powerful and flexible content management system (CMS) written in PHP that allows
you to create and manage websites.

If you are new to Drupal and would like to learn more, you can refer to my article on Getting Started with Drupal: A
Beginner's Guide

In this lab, I will guide you through the process of creating Docker container for Drupal and run PostgreSQL database
in the backend, and finally accessing the drupal website in the web browser.

The objective is to establish a local development environment for the drupal website. To accomplish this, you will
create a docker Compose file, run them locally. All of these tasks we are doing here will be useful in later chapters
when deploying to the Azure Kubernetes Service (AKS).

Technical Scenario

As an Application Architect , your responsibility is to design a content management system (CMS) that provides
you with enhanced control and flexibility. By creating a custom Docker container with Drupal, you gain the ability to
make modifications. You can adapt the Dockerfile to include additional packages, configurations, or custom
modules/themes as per your project's specific requirements. This approach guarantees that your Drupal
environment aligns with your project's needs while simultaneously utilizing Docker's advantages, including isolation,
portability, and scalability.

Objective

In this exercise, our objective is to accomplish and learn the following tasks:

Step-1: Setup Git Repository for Drupal.

Step-2: Create Drupal Project locally.

Step-3: Create Docker Compose file

Step-4: Build Drupal locally.

Step-5: Run Drupal Container locally.

Prerequisites

Before starting this lab, ensure you have the following prerequisites in place:

Docker Desktop: - Docker Downloads.

https://anjikeesari.com/articles/drupal/
https://anjikeesari.com/articles/drupal/
https://docs.docker.com/get-docker/

Git Client tool: - Git Downloads.

Git Repository: Initialize a Git repository for your Drupal website.

Docker installed

Docker compose installed

PostgreSQL installed - this will allow you to run psql command line tool

Verify the docker installation by running following commands:

Verify the docker compose by running following commands:

Architecture Diagram

The following diagram shows the high level steps to create docker container for Drupal website.

Step-1: Setup Git Repository for Drupal

Setting up a Git repository for your Drupal project allows you to manage your code effectively, work in teams, and
track the changes of your website's codebase.

Create azure devops project

Initialize repository

docker version

or

docker --version

or

docker -v

docker-compose version

https://git-scm.com/downloads
http://127.0.0.1:8000/micros-k8s/microservices/images/drupal/drupal-9.png
http://127.0.0.1:8000/micros-k8s/microservices/images/drupal/drupal-9.png

For this Drupal website, we can either use an existing git repository created in our first chapter or initiate a new one.

For example to clone an existing repository, run the following command:

Step-2: Create Drupal Project

In this step, we'll create a dedicated project or folder for our Drupal Website

Create a new project:

Inside our Git repository, create a new directory or folder specifically for your Drupal website. This folder will contain
all the necessary files for Drupal website, including docker compose & Dockerfile and configurations.

Step-3: Create Docker Compose file

To setup the Drupal with docker compose you need to first create a docker compose file that defines the drupal
service and any necessary dependencies, such as a PostgreSQL database.

Create a file named docker-compose.yml in your project directory. This file will define the services and
configurations for your Drupal setup.

git clone https://keesari.visualstudio.com/Microservices/_git/microservices

http://127.0.0.1:8000/micros-k8s/microservices/images/drupal/drupal-7.png
http://127.0.0.1:8000/micros-k8s/microservices/images/drupal/drupal-7.png

In the docker-compose.yml file, define the Drupal service. Use the official Drupal Docker image and specify any
necessary configurations. Here's an example of a Drupal service definition:

Uses the drupal:10-apache Docker image.

Maps port 8080 on your host to port 8080 in the drupal container.

Sets up an initial admin user and password for drupal.

Step-4: Build Drupal locally

The docker-compose up command is used to start and initialize the services defined in a Docker Compose file. We
will build the Docker container locally using the docker compose and ensure that the containerized application
working as expected.

docker-compose.yml

Drupal with PostgreSQL

#

Access via "http://localhost:8080"

(or "http://$(docker-machine ip):8080" if using docker-machine)

#

During initial Drupal setup,

Database type: PostgreSQL

Database name: postgres

Database username: postgres

Database password: example

ADVANCED OPTIONS; Database host: postgres

version: '3.1'

services:

 drupal:

 image: drupal:10-apache

 ports:

 - 8080:80

 volumes:

 - /var/www/html/modules

 - /var/www/html/profiles

 - /var/www/html/themes

 # this takes advantage of the feature in Docker that a new anonymous

 # volume (which is what we're creating here) will be initialized with the

 # existing content of the image at the same location

 - /var/www/html/sites

 restart: always

 postgres:

 image: postgres:16

 environment:

 POSTGRES_USER : postgres

 POSTGRES_PASSWORD: example

 # ports:

 # - "5432:5432"

 restart: always

List running Docker containers on your system.

List Docker images that are currently available on your local system.

Step-4.3: Run Drupal Container locally.

Run the Docker container locally to verify that the drupal website working correctly within a containerized
environment. This step ensures that the containerized drupal website works as expected on your local machine.

List the running Docker containers on your system

docker-compose up

or - -d flag, it tells Docker Compose to run the containers in detached mode

docker-compose up -d

#output

[+] Running 33/2

✔ postgres 14 layers [⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿] 0B/0B Pulled

✔ drupal 17 layers [⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿] 0B/0B Pulled

[+] Running 3/3

✔ Network drupal_default Created

✔ Container drupal-drupal-1 Started

✔ Container drupal-postgres-1 Started

docker ps

output

CONTAINER ID IMAGE COMMAND CREATED STATUS

PORTS NAMES

b2701f4c0b44 postgres:16 "docker-entrypoint.s…" 24 minutes ago Up 24

minutes 5432/tcp drupal-postgres-1

5141598054d3 drupal:10-apache "docker-php-entrypoi…" 24 minutes ago Up 24

minutes 0.0.0.0:8080->80/tcp drupal-drupal-1

docker image ls

output

REPOSITORY TAG

IMAGE ID CREATED SIZE

drupal 10-apache

48fb247e75d6 2 weeks ago 594MB

postgres 16

b0b90c1d9579 4 weeks ago 425MB

List the Docker networks that are available on your local system

if you open the docker desktop you will notice the new image & container started running.

Ensure that you test the PostgreSQL connection using either the pgAdmin tool or the psql command-line tool.

Access Drupal Webstie

Once the Drupal service is up and running, you can access the Drupal website by opening a web browser and
navigating to http://localhost:8080. You can log in using the admin user and password you defined in the Drupal
service configuration.

Drupal website > language

docker container ls

output

CONTAINER ID IMAGE COMMAND CREATED STATUS

PORTS NAMES

b2701f4c0b44 postgres:16 "docker-entrypoint.s…" 25 minutes ago Up 25

minutes 5432/tcp drupal-postgres-1

5141598054d3 drupal:10-apache "docker-php-entrypoi…" 25 minutes ago Up 25

minutes 0.0.0.0:8080->80/tcp drupal-drupal-1

docker network ls

output

026de34a62dc bridge bridge local

0dcb9a6803a2 drupal_default bridge local

Note

http://127.0.0.1:8000/micros-k8s/microservices/images/drupal/drupal-8.png
http://127.0.0.1:8000/micros-k8s/microservices/images/drupal/drupal-8.png

Drupal > Installation Profile

Drupal > Database configuration

http://127.0.0.1:8000/micros-k8s/microservices/images/drupal/drupal-1.png
http://127.0.0.1:8000/micros-k8s/microservices/images/drupal/drupal-1.png
http://127.0.0.1:8000/micros-k8s/microservices/images/drupal/drupal-2.png
http://127.0.0.1:8000/micros-k8s/microservices/images/drupal/drupal-2.png

Drupal > configure site

Drupal > welcome page

http://127.0.0.1:8000/micros-k8s/microservices/images/drupal/drupal-3.png
http://127.0.0.1:8000/micros-k8s/microservices/images/drupal/drupal-3.png
http://127.0.0.1:8000/micros-k8s/microservices/images/drupal/drupal-4.png
http://127.0.0.1:8000/micros-k8s/microservices/images/drupal/drupal-4.png

Drupal > Users page

Conclusion

You have successfully created a Docker container for Drupal Website, container created as part of this task will be
used in the future labs in AKS.

References

For further information and resources related to setting up Drupal in a Docker container, refer to the following:

1. Drupal Docker Official Repository

http://127.0.0.1:8000/micros-k8s/microservices/images/drupal/drupal-5.png
http://127.0.0.1:8000/micros-k8s/microservices/images/drupal/drupal-5.png
http://127.0.0.1:8000/micros-k8s/microservices/images/drupal/drupal-6.png
http://127.0.0.1:8000/micros-k8s/microservices/images/drupal/drupal-6.png
https://hub.docker.com/_/drupal

2. Docker Documentation

3. Docker Compose Documentation

4. Drupal.org - Official Drupal Website

https://docs.docker.com/
https://docs.docker.com/compose/
https://www.drupal.org/

Git Commands

In this article, I am going to present a comprehensive cheat sheet of commonly used Git commands with examples.

Installing git

Here are the commands to install Git on different operating systems:

Setting up git configuration:

To begin, it's important to configure your Git settings, associating your name and email with your commits. Use the
following commands to set your name and email respectively:

Caching credentials:

Typing in login credentials repeatedly can be time consuming. To streamline this process, you can store your
credentials in the cache using the command:

Enable automatic coloring of Git output

This command is used to enable automatic coloring of Git output in the command line interface. Enabling this option
enhances the readability of Git's output by applying different colors to various elements.

Checking git configuration:

Ubuntu/Debian:

sudo apt-get install git

MacOS (using Homebrew):

brew install git

Windows OS (using choco)

choco install git

git config --global user.name "anji.keesari"

git config --global user.email "anjkeesari@gmail.com"

git config --global credential.helper cache

git config --global color.ui auto

To verify your Git configuration, including your username and email, use the following command:

Initializing git

Before diving into Git commands, you need to initialize a new Git repository locally in your project's root directory.
Execute the command:

Git clone

To work on an existing Git repository, you can clone it using the command

Adding files to the staging area:

To stage changes and prepare them for commit, use the git add command. You can add specific files or entire
directories to the staging area using the following commands:

Committing changes:

Committing changes captures a snapshot of your code at a specific point in time. Use the following commands to
commit your changes:

Git log

To view the commit history of a repository, use the git log command. It provides you with an overview of past
commits and their respective details. Additionally, you can use git log -p to see the commit history along with the
changes made to each file.

git config -l

git init

git clone <repository-url>

git add <file-name> # Add a specific file

git add . # Add all changes in the current directory (excluding deletions)

git add test* # Add all files starting with 'test' in the current directory

git commit -m "(message)" # Commits the changes with a custom message

git commit -am "(message)" # Adds all changes to staging and commits them with a custom

message

Commit details

Use this command to see a specific commit in details

Note: replace commit-id with the id of the commit that you can find in the git log

Git status

This command will show the status of the current repository including staged, unstaged, and untracked files.

Undoing changes:

If you have already pushed a commit to a remote repository and want to undo it, you need to create a new commit
that undoes the changes. The following command will create a new commit that undoes the changes introduced by
the specified commit:

Replace with the ID of the commit you want to undo.

If you have already committed changes and want to undo the most recent commit, you have a few options
depending on your desired outcome: - Undo the commit and keep the changes as unstaged modifications:

Undo the commit and completely discard the changes:

Viewing differences

shows the commit history for the current repository:

git log

commit's history including all files and their changes:

git log -p

press q any time to quit

git show commit-id

git status

git revert <commit-id>

git reset HEAD^

git reset --hard HEAD^

To compare the differences between versions, you can use the git diff command. It displays the changes made to
files since the last commit.

This will show the line-by-line differences between the current state of the files and the last committed version.

Pushing changes

To push your local commits to a remote repository, you need to use following command.

Pulling changes

Use this command to incorporate the latest changes from a remote repository into your local repository.

Git fetch

To fetch the latest changes from the remote repository without merging them into your local branches.

Creating a new branch:

To create a new branch in Git, you can use the git branch command followed by the name of the branch you want to
create.

Switching branch:

git diff

git push origin <branch-name>

if you haven't set the upstream branch yet, you can use this

git push --set-upstream origin aspnet-api

git pull origin <branch-name>

git fetch

git branch <branch-name>

Creates a new branch, `aspnet-api` is name of the branch here

git branch aspnet-api

To switch to a different branch in your Git repository, you can utilize the git checkout command followed by the
name of the branch you want to switch to.

List branches

It will show a list of all branches and mark the current branch with an asterisk and highlight it in green.

Get remote URLs

You can see all remote repositories for your local repository with this command:

More info about a remote repo

How to get more info about a remote repo in Git:

Merging branches

In Git, merging allows you to combine the changes from one branch into another. To merge a branch into another
branch, you can use the git merge command followed by the name of the branch you want to merge. Here's an
example:

git checkout <branch-name>

Switched to branch 'aspnet-api'

git checkout aspnet-api

Shows the list of all branches.

git branch

List all local branches in repository. With -a: show all branches (with remote).

git branch -a

press q to quit

git remote -v

git remote show origin

git merge <branch-name>

For instance, if you want to merge the changes from the develop branch into the main branch

cd to the folder

git checkout main

git merge develop

After performing the merge, it's a good practice to check the status of your repository using git status to ensure that
the merge was successful and there are no conflicts to resolve. Additionally, you can view the commit history using
git log to see the merged commits and their details.

Delete branch

To delete a branch in Git, you can use either of the following commands:

Branch from a previous commit

To create a new branch in Git using a specific commit hash, you can use the git branch command followed by the
name of the branch and the commit hash

Rollback an old commit

You can revert an old commit using its commit id.

How to resolve merge conflicts using git commands

git status

git logs

git branch --delete <branch-name>

git branch -d <branch-name>

example

git branch to see list of branches before delete

git branch

delete the branch

git branch --delete <branch-name>

git branch again to see list of branches after delete

git branch

git branch branch_name <commit-hash>

Step 1: Create the branch from the commit hash

git branch new_branch 07615d50afde24d21e2180b90d3a0a58ec131980

this will create the local branch

Step 2: Switch to the new branch & commit

git commit -am “(message)”

git revert comit_id

Resolving merge conflicts in Git involves editing the conflicted files to choose which changes to keep and which to
discard, and then committing the resolved changes. Here's a step-by-step guide:

1. Check the status of your repository to see if there are any merge conflicts:

If there are merge conflicts, you will see a message indicating which files have conflicts.

2. Open the conflicted files in a text editor and look for the conflict markers. The markers will look something like
this:

1. Decide what changes you want to keep and remove the conflict markers and any unnecessary content. The
final content should only include the changes you want to keep.

3. Stage the changes using git add:

4. Commit the changes to the repository:

5. Push the changes to the remote repository if necessary:

Temporary commits

In Git, you can use temporary commits to store modified, tracked files temporarily, allowing you to switch branches
without losing your changes. This is a useful technique when you want to work on a different branch but are not
ready to commit your changes yet.

Stash your changes: This will create a temporary commit that stores your modifications, allowing you to switch
branches.

Git stash list Running this command will show you the stash ID, along with a description that includes the branch
name and commit message.

git status

<<<<<<< HEAD

This is the content from the current branch.

=======

This is the content from the branch you are merging.

>>>>>>> <branch-name>

git add <file-name>

git commit -m "Resolved merge conflicts"

git push origin <branch-name>

git stash

Git stash pop: his command is used to apply the changes from the top of the stash stack and remove that stash
from the stack.

Git stash drop: This command allows you to discard a stash from the stash stack. It permanently removes a stash
and its changes, freeing up space in the stack.

git stash list

git stash pop:

git stash drop:

Docker Commands

Introduction

In this article, I am going to present a comprehensive cheat sheet of commonly used Docker commands

Installing Docker

Here are the commands to install Docker on different operating systems:

Docker Install verify

To know docker is installed or not

What is the version installed on your machine

General Commands

Start the docker daemon

Get help with Docker. Can also use –help on all subcommands

Ubuntu/Debian:

sudo apt-get update

sudo apt-get install docker.io

MacOS (using Homebrew):

brew install docker

Windows OS (using choco)

choco install docker-desktop

which docker

output

/usr/bin/docker

docker -version

docker -d

docker --help

Display system-wide information

Docker Image

Docker image is a lightweight, standalone, and executable package that contains everything needed to run a piece of
software, including the code, runtime, system tools, libraries, and dependencies.

Docker Build

Build an image from a Dockerfile

Docker Run

docker info

List local images

docker images

Delete an Image

docker rmi <image_name>

Remove all unused images

docker image prune

Build an image from a Dockerfile and tag it with a specified name.

docker build -t <image_name>

build an image and tag with naming conventions

docker build -t projectname/domainname/appname:yyyymmdd.sequence .

Example

docker build -t sample/aspnet-api:20230226.1 .

Build an image from a Dockerfile without the cache

docker build -t <image_name> . –no-cache

--rm: This option automatically removes the container when it exits. It ensures that the container is cleaned up
after it finishes running. This is useful for temporary or disposable containers.

-p 8080:80: This option maps the host machine's port 8080 to the container's port 80. It establishes a network
connection between the host and the container, allowing access to the containerized application via port 8080 on
the host.

Exit the container

Docker Push

Docker container

A Docker container is a lightweight, standalone, and executable runtime instance of a Docker image. It represents a
running process that is isolated from the host system and other containers. Docker container providing a consistent
and reproducible environment for running applications. Containers are highly portable and can be easily moved and
deployed across different environments, such as development, testing, staging, and production.

Docker Hub

Docker Hub is a cloud-based registry service provided by Docker that allows developers to store and share container
images. It serves as a centralized repository for Docker images,

Create and run a container from an image, with a custom name:

docker run --name <container_name> <image_name>

Run a container with and publish a container’s port(s) to the host.

docker run -p <host_port>:<container_port> <image_name>

Run a container in the background

docker run -d <image_name>

Remove a stopped container:

docker rm <container_name>

Example:

docker run --rm -p 8080:80 project1/domain1/app1:20230226.1

exit

Publish an image to Docker Hub

docker push <username>/<image_name>

Docker network

This command creates a new bridge network named "network1" that containers can connect to for networked
communication.

Clean up resources

you can use the docker system prune command to clean up all dangling or unused resources, including images,
containers, volumes, and networks that are not tagged or connected to a running container. This command is helpful
for freeing up disk space and removing unnecessary resources.

If you need to clean up all containers and images locally in Docker Desktop, you can use the following commands:

Login into Docker

docker login -u <username>

Publish an image to Docker Hub

docker push <username>/<image_name>

Search Hub for an image

docker search <image_name>

Pull an image from a Docker Hub

docker pull <image_name>

docker network create -d bridge network1

before cleaning up Docker, first check all the available resources using the following

commands:

docker container ls

docker image ls

docker volume ls

docker network ls

docker info

docker system prune

or

docker system prune -a

To delete all containers including its volumes use,

docker rm -vf $(docker ps -aq)

To delete all volumes use,

docker volume rm $(docker volume ls -q)

To delete all the images,

docker rmi -f $(docker images -aq)

Docker Compose Commands

Below are some commonly used Docker Compose commands:

Starts services

Starts the services defined in your docker-compose.yml file. It creates and starts containers as specified in the
configuration.

Starts the services in the background (detached mode).

Stops services

Stops and removes containers, networks, volumes, and other services defined in your docker-compose.yml file.

Stops and removes containers, networks, volumes, and other services while also removing volumes.

Stops and removes containers, networks, volumes, and other services, while also removing volumes and images.

Stops the services defined in your docker-compose.yml file without removing them.

Lists the containers

Lists the containers that are part of your Docker Compose setup, showing their status.

Lists all containers, including stopped ones, that are part of your Docker Compose setup.

Displays log

docker-compose up

docker-compose up -d

docker-compose down

docker-compose down -v

docker-compose down --volumes --rmi all

docker-compose stop

docker-compose ps

docker-compose ps -a

Displays log output from services. You can use the -f option to follow the logs in real-time.

Displays logs for a specific service.

Executes a command

Executes a command in a running service container.

Builds services

Builds or rebuilds services defined in your docker-compose.yml file.

Restarts services

Restarts services.

Displays configuration

Validates and displays the configuration of your docker-compose.yml file.

Pauses services

Pauses all services. Containers remain running, but they stop processing requests.

Unpauses services after they have been paused.

docker-compose logs

docker-compose logs webserver

docker-compose exec webserver ls -l

docker-compose build

docker-compose restart

docker-compose config

docker-compose pause

docker-compose unpause

docker-compose top

Displays the running processes of a service.

Scales service

Scales a service to the specified number of instances.

Display events

docker compose config

Parse, resolve and render compose file in canonical forma

Streams real-time events from your services.

Docker commands Summary

Basic Commands

docker run [image] : Start a new container from an image

docker ps : List all running containers

docker stop [container] : Stop a running container

docker rm [container] : Remove a container

docker images : List all available images

docker pull [image] : Download an image from a registry

docker push [image] : Upload an image to a registry

docker build [options] [path] : Build an image from a Dockerfile

Advanced Commands

docker exec [container] [command] : Run a command inside a running container

docker-compose up : Start a Docker Compose application

docker network [subcommand] : Manage Docker networks

docker volume [subcommand] : Manage Docker volumes

docker-compose scale webserver=3

docker-compose events

docker-compose config

docker logs [container] : View the logs of a container

docker inspect [container] : Inspect a container

docker diff [container] : Show changes to the filesystem of a container

docker commit [container] [image] : Create a new image from a container's changes

docker save [image] : Save an image to a tar archive

docker load : Load an image from a tar archive

References

Overview of docker compose CLI

https://docs.docker.com/compose/reference/

Dockerfile Commands

Introduction

In this article, I am going to present a comprehensive cheat sheet of commonly used Dockerfile commands

Dockerfile

A Dockerfile is a text document that contains instructions for building a Docker image. Docker can automatically
build images by interpreting instructions from a Dockerfile. This page outlines the commands available for use
within a Dockerfile."

1. FROM

Specifies the base image for your Docker image.

Example:

2. RUN

Executes commands in the shell of the container.

Example:

3. COPY

Copies files or directories from the build context to the container's filesystem.

Example:

FROM <image>[:<tag>] [AS <name>]

FROM mcr.microsoft.com/dotnet/sdk:5.0 AS build

RUN <command>

RUN apt-get update && apt-get install -y \

git

COPY <src> <dest>

4. WORKDIR

Sets the working directory for any RUN, CMD, ENTRYPOINT, COPY, and ADD instructions that follow it.

Example:

5. CMD

Specifies the default command to run when the container starts.

Example:

6. ENTRYPOINT

Specifies the command to run when the container starts, allowing arguments to be passed.

Example:

7. EXPOSE

Informs Docker that the container listens on specific network ports at runtime.

Example:

COPY . /app

WORKDIR /path/to/directory

WORKDIR /app

CMD ["executable", "param1", "param2"]

CMD ["dotnet", "MyApi.dll"]

ENTRYPOINT ["executable", "param1", "param2"]

ENTRYPOINT ["dotnet", "MyApi.dll"]

EXPOSE <port> [<port>/<protocol>...]

EXPOSE 80

8. ENV

Sets environment variables.

Example:

9. ARG

Defines build-time variables.

Example:

10. VOLUME

Creates a mount point and marks it as holding externally mounted volumes from native host or other containers.

Example:

11. LABEL

Adds metadata to an image.

Example:

12. USER

ENV <key> <value>

ENV ASPNETCORE_ENVIRONMENT=Production

ARG <name>[=<default value>]

ARG CONNECTION_STRING

VOLUME /path/to/volume

VOLUME /var/log/app

LABEL <key>=<value> <key>=<value> ...

LABEL maintainer="John Doe <john@example.com>"

Sets the user or UID to use when running the image.

Example:

13. HEALTHCHECK

Defines a command to periodically check the container's health.

Example:

14. ONBUILD

Adds a trigger instruction when the image is used as the base for another build.

Example:

15. STOPSIGNAL

Sets the system call signal that will be sent to the container to exit.

Example:

16. SHELL

Overrides the default shell used for the shell form of commands.

USER <username | UID>

USER appuser

HEALTHCHECK [OPTIONS] CMD <command>

HEALTHCHECK --interval=30s --timeout=3s \

CMD curl -f http://localhost/health || exit 1

ONBUILD <INSTRUCTION>

ONBUILD COPY . /app

STOPSIGNAL signal

STOPSIGNAL SIGTERM

Example:

CMD vs ENTRYPOINT

CMD and ENTRYPOINT are used to specify the default command to run when a container is started. However, they
have different behaviors and can be used together in different ways depending on the requirements of your Docker
image.

CMD:

Sets default command and/or parameters.

Can be overridden from the command line.

Last CMD instruction takes effect if multiple are present.

ENTRYPOINT:

Specifies main executable to run.

Allows arguments to be passed.

Arguments passed to docker run are appended to the ENTRYPOINT command.

Last ENTRYPOINT instruction takes effect if multiple are present.

Best Practices:

Use CMD for default command and parameters.

Use ENTRYPOINT for main executable, allowing additional arguments.

Example:

In this example, dotnet MyApi.dll is the main executable, with any additional arguments passed when running the
container.

COPY vs ADD

COPY and ADD are used to copy files and directories from the host machine into the container's filesystem. While
they have similar functionalities, there are some differences between them.

COPY Instruction:

SHELL ["executable", "parameters"]

SHELL ["/bin/bash", "-c"]

ENTRYPOINT ["dotnet", "MyApi.dll"]

The COPY instruction copies files or directories from the build context (i.e., the directory containing the Dockerfile)
into the container's filesystem. It can copy local files/directories as well as files/directories from URLs. However, it
does not support extracting files from compressed archives (e.g., .tar.gz).

ADD Instruction:

The ADD instruction has the same functionality as COPY, but it also supports additional features such as extracting
compressed archives (e.g., .tar.gz) and copying files from URLs. However, because of these additional features, it's
considered less predictable and is recommended to use COPY instead unless the extra functionality of ADD is
specifically required.

Feature COPY ADD

Functionality Copies files/directories from
build context

Same as COPY, plus supports additional features like extracting
compressed archives and copying files from URLs

Predictability More predictable and
straightforward

Provides additional functionality but less predictable

Best
Practice

Preferred for basic file
copying tasks

Use sparingly, only when additional features are needed

In summary, COPY is preferred for basic file copying tasks due to its predictability, while ADD offers additional
functionality but should be used with caution.

References

Dockerfile reference

https://docs.docker.com/engine/reference/builder/#overview

